459 research outputs found

    VHL Type 2B Mutations Retain VBC Complex Form and Function

    Get PDF
    Background: von Hippel-Lindau disease is characterized by a spectrum of hypervascular tumors, including renal cell carcinoma, hemangioblastoma, and pheochromocytoma, which occur with VHL genotype-specific differences in penetrance. VHL loss causes a failure to regulate the hypoxia inducible factors (HIF-1a and HIF-2a), resulting in accumulation of both factors to high levels. Although HIF dysregulation is critical to VHL disease-associated renal tumorigenesis, increasing evidence points toward gradations of HIF dysregulation contributing to the degree of predisposition to renal cell carcinoma and other manifestations of the disease. Methodology/Principal Findings: This investigation examined the ability of disease-specific VHL missense mutations to support the assembly of the VBC complex and to promote the ubiquitylation of HIF. Our interaction analysis supported previous observations that VHL Type 2B mutations disrupt the interaction between pVHL and Elongin C but maintain partial regulation of HIF. We additionally demonstrated that Type 2B mutant pVHL forms a remnant VBC complex containing the active members ROC1 and Cullin-2 which retains the ability to ubiquitylate HIF-1a. Conclusions: Our results suggest that subtypes of VHL mutations support an intermediate level of HIF regulation via a remnant VBC complex. These findings provide a mechanism for the graded HIF dysregulation and genetic predisposition fo

    Cytokine-dependent and cytokine-independent roles for Mcl-1: genetic evidence for multiple mechanisms by which Mcl-1 promotes survival in primary T lymphocytes

    Get PDF
    Myeloid cell leukemia sequence-1 (Mcl-1) is a critical anti-apoptotic factor in T lymphocytes. However, in spite of the many pro-apoptotic proteins with proposed binding to Mcl-1, the specific interactions by which Mcl-1 regulates primary T-cell survival under different conditions have not been fully explored. Further, how different trophic cytokines modulate the specific role(s) of Mcl-1 is unknown. Here, we use genetic mouse models to dissect the roles of Mcl-1 in primary T lymphocytes. Using the inducible Mcl-1-floxed estrogen receptor-Cre fusion protein (Mcl-1f/fERCre) deletion system in combination with genetic modification of other B-cell lymphoma 2 (Bcl-2) family members, we show that loss of pro-apoptotic Bcl-2 homologous antagonist/killer (Bak) rescues the survival of Mcl-1-deficient T cells in the presence of IL-7. Without IL-7, the survival of Mcl-1-deficient cells cannot be rescued by loss of Bak, but is partially rescued by overexpression of Bcl-2 or loss of Bcl-2-interacting mediator of cell death (Bim). Thus, Mcl-1 and Bcl-2 have a shared role, the inhibition of Bim, in promoting T-cell survival during cytokine withdrawal. Finally, we show that other common gamma-chain (γc) cytokines differentially modulate the roles of Mcl-1. IL-15 has effects similar to those of IL-7 in memory T cells and naïve CD8+ cells, but not naïve CD4+ cells. However, IL-4 maintains Mcl-1 and Bcl-2 but also upregulates Bim and Bcl-2-associated X protein (Bax), thus altering the cell's dependence on Mcl-1

    Systematic identification of signaling pathways with potential to confer anticancer drug resistance

    Get PDF
    Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)–mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAF[superscript V600E] melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts.National Institutes of Health (U.S.) (Grant CA103866)National Institutes of Health (U.S.) (Grant AI07389

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects

    Get PDF
    Comprehensive sequencing of human cancers has identified recurrent mutations in genes encoding chromatin regulatory proteins. For clear cell renal cell carcinoma (ccRCC), three of the five commonly mutated genes encode the chromatin regulators PBRM1, SETD2, and BAP1. How these mutations alter the chromatin landscape and transcriptional program in ccRCC or other cancers is not understood. Here, we identified alterations in chromatin organization and transcript profiles associated with mutations in chromatin regulators in a large cohort of primary human kidney tumors. By associating variation in chromatin organization with mutations in SETD2, which encodes the enzyme responsible for H3K36 trimethylation, we found that changes in chromatin accessibility occurred primarily within actively transcribed genes. This increase in chromatin accessibility was linked with widespread alterations in RNA processing, including intron retention and aberrant splicing, affecting ∼25% of all expressed genes. Furthermore, decreased nucleosome occupancy proximal to misspliced exons was observed in tumors lacking H3K36me3. These results directly link mutations in SETD2 to chromatin accessibility changes and RNA processing defects in cancer. Detecting the functional consequences of specific mutations in chromatin regulatory proteins in primary human samples could ultimately inform the therapeutic application of an emerging class of chromatin-targeted compounds

    Notch-induced T cell development requires phosphoinositide-dependent kinase 1

    Get PDF
    Phosphoinositide-dependent kinase l (PDK1) phosphorylates and activates multiple AGC serine kinases, including protein kinase B (PKB), p70Ribosomal S6 kinase (S6K) and p90Ribosomal S6 kinase (RSK). PDK1 is required for thymocyte differentiation and proliferation, and herein, we explore the molecular basis for these essential functions of PDK1 in T lymphocyte development. A key finding is that PDK1 is required for the expression of key nutrient receptors in T cell progenitors: CD71 the transferrin receptor and CD98 a subunit of L-amino acid transporters. PDK1 is also essential for Notch-mediated trophic and proliferative responses in thymocytes. A PDK1 mutant PDK1 L155E, which supports activation of PKB but no other AGC kinases, can restore CD71 and CD98 expression in pre-T cells and restore thymocyte differentiation. However, PDK1 L155E is insufficient for thymocyte proliferation. The role of PDK1 in thymus development thus extends beyond its ability to regulate PKB. In addition, PDK1 phosphorylation of AGC kinases such as S6K and RSK is also necessary for thymocyte development

    The Glucose Transporter 2 regulates CD8+ T cell function via environment sensing

    Get PDF
    T cell activation is associated with a profound and rapid metabolic response to meet increased energy demands for cell division, differentiation and development of effector function. Glucose uptake and engagement of the glycolytic pathway are major checkpoints for this event. Here we show that the low-affinity, concentration-dependent glucose transporter 2 (Glut2) regulates the development of CD8+ T cell effector responses in mice by promoting glucose uptake, glycolysis and glucose storage. Expression of Glut2 is modulated by environmental factors including glucose and oxygen availability and extracellular acidification. Glut2 is highly expressed by circulating, recently primed T cells, allowing efficient glucose uptake and storage. In glucose-deprived inflammatory environments, Glut2 becomes downregulated, thus preventing passive loss of intracellular glucose. Mechanistically, Glut2 expression is regulated by a combination of molecular interactions involving hypoxia-inducible factor-1 alpha, galectin-9 and stomatin. Finally, we show that human T cells also rely on this glucose transporter, thus providing a potential target for therapeutic immunomodulation

    TSC1/2 Signaling Complex Is Essential for Peripheral Naïve CD8+ T Cell Survival and Homeostasis in Mice

    Get PDF
    The PI3K-Akt-mTOR pathway plays crucial roles in regulating both innate and adaptive immunity. However, the role of TSC1, a critical negative regulator of mTOR, in peripheral T cell homeostasis remains elusive. With T cell-specific Tsc1 conditional knockout (Tsc1 KO) mice, we found that peripheral naïve CD8+ T cells but not CD4+ T cells were severely reduced. Tsc1 KO naïve CD8+ T cells showed profound survival defect in an adoptive transfer model and in culture with either stimulation of IL-7 or IL-15, despite comparable CD122 and CD127 expression between control and KO CD8+ T cells. IL-7 stimulated phosphorylation of Akt(S473) was diminished in Tsc1 KO naïve CD8+T cells due to hyperactive mTOR-mediated feedback suppression on PI3K-AKT signaling. Furthermore, impaired Foxo1/Foxo3a phosphorylation and increased pro-apoptotic Bim expression in Tsc1 KO naïve CD8+T cells were observed upon stimulation of IL-7. Collectively, our study suggests that TSC1 plays an essential role in regulating peripheral naïve CD8+ T cell homeostasis, possible via an mTOR-Akt-FoxO-Bim signaling pathway

    Ror2, a developmentally regulated kinase, promotes tumor growth potential in renal cell carcinoma

    Get PDF
    Inappropriate kinase expression and subsequent promiscuous activity defines the transformation of many solid tumors including renal cell carcinoma (RCC). Thus, the expression of novel tumor-associated kinases has the potential to dramatically shape tumor cell behavior. Further, identifying tumor-associated kinases can lend insight into patterns of tumor growth and characteristics. Here, we report the identification of Ror2, a new tumor-associated kinase in RCC cell lines and primary tumors. Ror2 is an orphan receptor tyrosine kinase with physiological expression normally seen in the embryonic kidney. However, in RCC, Ror2 expression correlated with expression of genes involved at the extracellular matrix, including Twist and matrix metalloprotease-2 (MMP2). Expression of MMP2 in RCC cells was suppressed by Ror2 knockdown, placing Ror2 as a mediator of MMP2 regulation in RCC and a potential regulator of extracellular matrix remodeling. The suppression of Ror2 not only inhibited cell migration, but also inhibited anchorage independent growth in soft agar and growth in an orthotopic xenograft model. These findings suggest a novel pathway of tumor-promoting activity by Ror2 within a subset of renal carcinomas, with significant implications for unraveling the tumorigenesis of RCC
    corecore