51 research outputs found
Improvement of Nutrient Utilization Efficiency, Ruminal Fermentation and Lactational Performance of Dairy Cows by Feeding Birdsfoot Trefoil
Forages containing condensed tannins (CT) have potential to reduce the environmental impact of dairy farming. In 3 studies, I hypothesized that feeding CTcontaining birdsfoot trefoil (Lotus corniculatus, BFT) would result in improved nutrient utilization and lactational performance of dairy cows compared with control forages of the respective experiments.
Improved milk components, reduction in waste N, and overall improved N efficiency were hypothesized for BFT-fed cows compared to those cows fed alfalfa hay (Study 1) or grass-based diets (Study 2). In addition, a decrease in in vitro methane production and improved rumen fermentation due to diets based on BFT pasture and concentrate supplementation compared with grass pasture-based diets was the hypothesis of the third study.
Study 1 showed BFT-hay diets improved lactational performance through increased energy-corrected milk yield and increased milk protein yield, resulting in improved N utilization efficiency compared with the alfalfa hay diet. Total volatile fatty acids concentration tended to increase, and greater microbial protein yield was exhibited by cows fed BFT compared to other diets tested. Therefore, BFT can replace alfalfa hay in dairy diets and showed improved feed and N utilization efficiencies and lactational performance.
Study 2 determined that pasture nutrient content increased for BFT pasture compared to the mixed grass control, contributing to increases in milk yield most weeks during the 2-year study. Energy-corrected milk yield increased most weeks by BFT-grazed cows due to increased milk yield, although milk protein concentration was similar between treatments. Cows grazing BFT pasture increased N efficiency coupled with decreased milk urea N secretion in the first, but not the second year, suggesting an environmental advantage over traditional grass-based pastures depending on the effect of growing conditions on pasture quality at time of grazing.
Study 3 showed that offering BFT pasture to continuous cultures without or with barley grain or total mixed ration supplements reduced methane production and altered rumen microbial populations. The reduced methane production on the continuous cultures was likely due to direct and/or indirect effects of CT on rumen microbiota.
Overall, diets including BFT showed improved nutritive, lactational, and environmental benefits by decreasing N waste and methane production over typical alfalfa hay-based dairy diets and grass pastures
Understanding the Influence of Trenbolone Acetate and Polyamines on Proliferation of Bovine Satellite Cells
Approximately 90% of beef cattle on feed in the United States receive at least one anabolic implant, which results in increased growth, efficiency, and economic return to producers. However, the complete molecular mechanism through which anabolic implants function to improve skeletal muscle growth remains unknown. This study had 2 objectives: (1) determine the effect of polyamines and their precursors on proliferation rate in bovine satellite cells (BSC); and (2) understand whether trenbolone acetate (TBA), a testosterone analog, has an impact on the polyamine biosynthetic pathway. To address these, BSC were isolated from 3 finished steers and cultured. Once cultures reached 75% confluency, they were treated in 1% fetal bovine serum (FBS) and/or 10 nM TBA, 10 mM methionine (Met), 8 mM ornithine (Orn), 2 mM putrescine (Put), 1.5 mM spermidine (Spd), or 0.5 mM spermine (Spe). Initially, a range of physiologically relevant concentrations of Met, Orn, Put, Spd, and Spe were tested to determine experimental doses to implement the aforementioned experiments. One, 12, or 24 h after treatment, mRNA was isolated from cultures and abundance of paired box transcription factor 7 (Pax7), Sprouty 1 (Spry), mitogen-activated protein kinase-1 (Mapk), ornithine decarboxylase (Odc), and S adenosylmethionine (Amd1) were determined, and normalized to 18S. No treatment × time interactions were observed (P ≥ 0.05). Treatment with TBA, Met, Orn, Put, Spd, or Spe increased (P ≤ 0.05) BSC proliferation when compared with control cultures. Treatment of cultures with Orn or Met increased (P ≤ 0.01) expression of Odc 1 h after treatment when compared with control cultures. Abundance of Amd1 was increased (P \u3c 0.01) 1 h after treatment in cultures treated with Spd or Spe when compared with 1% FBS controls. Cultures treated with TBA had increased (P \u3c 0.01) abundance of Spry mRNA 12 h after treatment, as well as increased mRNA abundance of Mapk (P \u3c 0.01) 12 h and 24 h after treatment when compared with 1% FBS control cultures. Treatment with Met increased (P \u3c 0.01) mRNA abundance of Pax7 1 h after treatment as compared with 1% FBS controls. These results indicate that treatments of BSC cultures with polyamines and their precursors increase BSC proliferation rate, as well as abundance of mRNA involved in cell proliferation. In addition, treatment of BSC cultures with TBA, polyamines, or polyamine precursors impacts expression of genes related to the polyamine biosynthetic pathway and proliferation
The association between human endogenous retroviruses and multiple sclerosis: a systematic review and meta-analysis
Background:
The interaction between genetic and environmental factors is crucial to multiple sclerosis (MS) pathogenesis. Human Endogenous Retroviruses (HERVs) are endogenous viral elements of the human genome whose expression is associated with MS.
Objective:
To perform a systematic review and meta-analysis and to assess qualitative and quantitative evidence on the expression of HERV families in MS patients.
Methods:
Medline, Embase and the Cochrane Library were searched for published studies on the association of HERVs and MS. Meta-analysis was performed on the HERV-W family. Odds Ratio (OR) and 95% confidence interval (CI) were calculated for association.
Results:
43 reports were extracted (25 related to HERV-W, 13 to HERV-H, 9 to HERV-K, 5 to HRES-1 and 1 to HER-15 family). The analysis showed an association between expression of all HERV families and MS. For HERV-W, adequate data was available for meta-analysis. Results from meta-analyses of HERV-W were OR = 22.66 (95%CI 6.32 to 81.20) from 4 studies investigating MSRV/HERV-W(MS-associated retrovirus) envelope mRNA in peripheral blood mononuclear cells, OR = 44.11 (95%CI 12.95 to 150.30) from 6 studies of MSRV/ HERV-W polymerase mRNA in serum/plasma and OR = 6.00 (95%CI 3.35 to 10.74) from 4 studies of MSRV/HERV-W polymerase mRNA in CSF
RELICS: Reionization Lensing Cluster Survey
Large surveys of galaxy clusters with the Hubble and Spitzer Space
Telescopes, including CLASH and the Frontier Fields, have demonstrated the
power of strong gravitational lensing to efficiently deliver large samples of
high-redshift galaxies. We extend this strategy through a wider, shallower
survey named RELICS, the Reionization Lensing Cluster Survey. This survey,
described here, was designed primarily to deliver the best and brightest
high-redshift candidates from the first billion years after the Big Bang.
RELICS observed 41 massive galaxy clusters with Hubble and Spitzer at 0.4-1.7um
and 3.0-5.0um, respectively. We selected 21 clusters based on Planck PSZ2 mass
estimates and the other 20 based on observed or inferred lensing strength. Our
188-orbit Hubble Treasury Program obtained the first high-resolution
near-infrared images of these clusters to efficiently search for lensed
high-redshift galaxies. We observed 46 WFC3/IR pointings (~200 arcmin^2) with
two orbits divided among four filters (F105W, F125W, F140W, and F160W) and ACS
imaging as needed to achieve single-orbit depth in each of three filters
(F435W, F606W, and F814W). As previously reported by Salmon et al., we
discovered 322 z ~ 6 - 10 candidates, including the brightest known at z ~ 6,
and the most distant spatially-resolved lensed arc known at z ~ 10. Spitzer
IRAC imaging (945 hours awarded, plus 100 archival) has crucially enabled us to
distinguish z ~ 10 candidates from z ~ 2 interlopers. For each cluster, two HST
observing epochs were staggered by about a month, enabling us to discover 11
supernovae, including 3 lensed supernovae, which we followed up with 20 orbits
from our program. We delivered reduced HST images and catalogs of all clusters
to the public via MAST and reduced Spitzer images via IRSA. We have also begun
delivering lens models of all clusters, to be completed before the JWST GO call
for proposals.Comment: 29 pages, 6 figures, submitted to ApJ. For reduced images, catalogs,
lens models, and more, see relics.stsci.ed
Charting the course for a Blue Economy in Peru: A Research Agenda
Ocean- and coastal-based economic activities are increasingly recognised as key drivers for supporting global economies. This move towards the “blue economy” is becoming globally widespread, with the recognition that if ocean-based activities are to be sustainable, they will need to move beyond solely extractive and exploitative endeavours, aligning more closely with marine conservation and effective marine spatial planning. In this paper we define the “blue economy” as a “platform for strategic, integrated and participatory coastal and ocean development and protection that incorporates a low carbon economy, the ecosystem approach and human well-being through advancing regional industries, services and activities”. In Peru, while the seas contribute greatly to the national economy, the full potential of the blue economy has yet to be realised. This paper presents the findings of an early career scientist workshop in Lima, Peru, in March 2016. The workshop “Advancing Green Growth in Peru” brought together researchers to identify challenges and opportunities for green growth across three Peruvian economic sectors—tourism, transport and the blue economy with this paper exploring in detail the priorities generated from the “blue economy” stream. These priorities include themes such as marine spatial planning, detailed evaluations of existing maritime industries (e.g. guano collection and fisheries), development of an effective MPA network, support for sustainable coastal tourism, and better inclusion of social science disciplines in understanding societal and political support for a Peruvian blue economy. In addition, the paper discusses the research requirements associated with these priorities. While not a comprehensive list, these priorities provide a starting point for future dialogue on a co-ordinated scientific platform supporting the blue growth agenda in Peru, and in other regions working towards a successful “blue economy”
AI is a viable alternative to high throughput screening: a 318-target study
: High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
Rising rural body-mass index is the main driver of the global obesity epidemic in adults
Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We
estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from
1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories.
Methods We used data from 3663 population-based studies with 222 million participants that measured height and
weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate
trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children
and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the
individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference)
and obesity (BMI >2 SD above the median).
Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in
11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed
changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and
140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of
underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and
countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior
probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse
was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of
thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a
posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%)
with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and
obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for
both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such
as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged
children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls
in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and
42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents,
the increases in double burden were driven by increases in obesity, and decreases in double burden by declining
underweight or thinness.
Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an
increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy
nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of
underweight while curbing and reversing the increase in obesit
Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants
Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …