323 research outputs found
Evaluating conservation strategies for the endangered daisy Schoenia filifolia subsp. subulifolia (Asteraceae): fitness consequences of genetic rescue and hybridisation with a widespread subspecies
Context: To establish translocated populations of threatened plants with the genetic resources to adapt to changing environmental conditions, the source of propagation material is an important consideration.
Aim: We investigated the fitness consequences of genetic rescue and admixture for the threatened annual daisy Schoenia filifolia subsp. subulifolia, and the common S. filifolia subsp. filifolia, to inform seed-sourcing strategies for translocations of the threatened subspecies.
Methods: We evaluated genetic diversity of two populations of S. filifolia subsp. subulifolia and four populations of S. filifolia subsp. filifolia by using microsatellite markers. We grew seedlings from each study population and cross-pollinated inflorescences within and among populations of the same subspecies, and between subspecies. We evaluated the fitness consequences of each cross by using seed set, seed weight and seed viability.
Key results: There was a lower genetic diversity in the small (10 000 plants, Nar = 4.42, He = 0.51) population of S. filifolia subsp. subulifolia, although none of the measures was significantly different, and seed fitness was slightly, although not significantly, reduced in interpopulation crosses compared with the small population. Genetic diversity was similar between the threatened and widespread subspecies; however, the subspecies were genetically divergent (Fst = 0.242–0.294) and cross-pollination between subspecies produced negligible amounts of seeds (<3% seed set).
Conclusions: Although genetic rescue or admixture of S. filifolia subsp. subulifolia would not necessarily result in greatly increased levels of genetic diversity or seed fitness, we still consider it a potential option. Negligible seed set in crosses between subspecies indicates that deliberate hybridisation is not a possibility.
Implications: Studies of fitness consequences of admixture or genetic rescue are rare yet critical to assessing the benefits of different translocation strategies
Emerging role of insulin with incretin therapies for management of type 2 diabetes
Type 2 diabetes mellitus (T2DM) is a progressive disease warranting intensification of treatment, as beta-cell function declines over time. Current treatment algorithms recommend metformin as the first-line agent, while advocating the addition of either basal-bolus or premixed insulin as the final level of intervention. Incretin therapy, including incretin mimetics or enhancers, are the latest group of drugs available for treatment of T2DM. These agents act through the incretin axis, are currently recommended as add-on agents either as second-or third-line treatment, without concurrent use of insulin. Given the novel role of incretin therapy in terms of reducing postprandial hyperglycemia, and favorable effects on weight with reduced incidence of hypoglycemia, we explore alternative options for incretin therapy in T2DM management. Furthermore, as some evidence alludes to incretins potentially increasing betacell mass and altering disease progression, we propose introducing these agents earlier in the treatment algorithm. In addition, we suggest the concurrent use of incretins with insulin, given the favorable effects especially in relation to weight gain
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context.
Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI).
Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa.
Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden.
Funding: Bill & Melinda Gates Foundation
Effect of a 2-week interruption in methotrexate treatment on COVID-19 vaccine response in people with immune-mediated inflammatory diseases (VROOM study): a randomised, open label, superiority trial
Background: Methotrexate is the first-line treatment for immune-mediated inflammatory diseases and reduces vaccine-induced immunity. We evaluated if a 2-week interruption of methotrexate treatment immediately after COVID-19 booster vaccination improved antibody response against the S1 receptor binding domain (S1-RBD) of the SARS-CoV-2 spike protein and live SARS-CoV-2 neutralisation compared with uninterrupted treatment in patients with immune-mediated inflammatory diseases. Method: We did a multicentre, open-label, parallel-group, randomised, superiority trial in secondary-care rheumatology and dermatology clinics in 26 hospitals in the UK. Adults (aged ≥18 years) with immune-mediated inflammatory diseases taking methotrexate (≤25 mg per week) for at least 3 months, who had received two primary vaccine doses from the UK COVID-19 vaccination programme were eligible. Participants were randomly assigned (1:1) using a centralised validated computer program, to temporarily suspend methotrexate treatment for 2 weeks immediately after COVID-19 booster vaccination or continue treatment as usual. The primary outcome was S1-RBD antibody titres 4 weeks after COVID-19 booster vaccination and was assessed masked to group assignment. All randomly assigned patients were included in primary and safety analyses. This trial is registered with ISRCTN, ISRCTN11442263; following a pre-planned interim analysis, recruitment was stopped early. Finding: Between Sept 30, 2021, and March 7, 2022, we screened 685 individuals, of whom 383 were randomly assigned: to either suspend methotrexate (n=191; mean age 58·8 years [SD 12·5], 118 [62%] women and 73 [38%] men) or to continue methotrexate (n=192; mean age 59·3 years [11·9], 117 [61%] women and 75 [39%] men). At 4 weeks, the geometric mean S1-RBD antibody titre was 25 413 U/mL (95% CI 22 227–29 056) in the suspend methotrexate group and 12 326 U/mL (10 538–14 418) in the continue methotrexate group with a geometric mean ratio (GMR) of 2·08 (95% CI 1·59–2·70; p<0·0001). No intervention-related serious adverse events occurred. Interpretation: 2-week interruption of methotrexate treatment in people with immune-mediated inflammatory diseases enhanced antibody responses after COVID-19 booster vaccination that were sustained at 12 weeks and 26 weeks. There was a temporary increase in inflammatory disease flares, mostly self-managed. The choice to suspend methotrexate should be individualised based on disease status and vulnerability to severe outcomes from COVID-19. Funding: National Institute for Health and Care Research
Formulation, stabilisation and encapsulation of bacteriophage for phage therapy
Against a backdrop of global antibiotic resistance and increasing awareness of the importance of the
human microbiota, there has been resurgent interest in the potential use of bacteriophages for
therapeutic purposes, known as phage therapy. A number of phage therapy phase I and II clinical
trials have concluded, and shown phages don’t present significant adverse safety concerns. These
clinical trials used simple phage suspensions without any formulation and phage stability was of
secondary concern. Phages have a limited stability in solution, and undergo a significant drop in
phage titre during processing and storage which is unacceptable if phages are to become regulated
pharmaceuticals, where stable dosage and well defined pharmacokinetics and pharmacodynamics
are de rigueur. Animal studies have shown that the efficacy of phage therapy outcomes depend on
the phage concentration (i.e. the dose) delivered at the site of infection, and their ability to target and
kill bacteria, arresting bacterial growth and clearing the infection. In addition, in vitro and animal
studies have shown the importance of using phage cocktails rather than single phage preparations to
achieve better therapy outcomes. The in vivo reduction of phage concentration due to interactions
with host antibodies or other clearance mechanisms may necessitate repeated dosing of phages, or
sustained release approaches. Modelling of phage-bacterium population dynamics reinforces these
points. Surprisingly little attention has been devoted to the effect of formulation on phage therapy
outcomes, given the need for phage cocktails, where each phage within a cocktail may require
significantly different formulation to retain a high enough infective dose.
This review firstly looks at the clinical needs and challenges (informed through a review of key animal
studies evaluating phage therapy) associated with treatment of acute and chronic infections and the
drivers for phage encapsulation. An important driver for formulation and encapsulation is shelf life and
storage of phage to ensure reproducible dosages. Other drivers include formulation of phage for
encapsulation in micro- and nanoparticles for effective delivery, encapsulation in stimuli responsive
systems for triggered controlled or sustained release at the targeted site of infection. Encapsulation of
phage (e.g. in liposomes) may also be used to increase the circulation time of phage for treating
systemic infections, for prophylactic treatment or to treat intracellular infections. We then proceed to
document approaches used in the published literature on the formulation and stabilisation of phage for
storage and encapsulation of bacteriophage in micro- and nanostructured materials using freeze
drying (lyophilization), spray drying, in emulsions e.g. ointments, polymeric microparticles,
nanoparticles and liposomes. As phage therapy moves forward towards Phase III clinical trials, the
review concludes by looking at promising new approaches for micro- and nanoencapsulation of
phages and how these may address gaps in the field
- …