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A phase relationship is identified between sequential edge localized modes (ELMs) occurrence

times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in

the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is

sustained over several seconds, during which ELMs are observed in the Be II emission at the

divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to

control the ELMing process by external means. We use ELM timings derived from the Be II

signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which

provide a high cadence global measurement proportional to the voltage induced by changes in

poloidal magnetic flux. Specifically, we examine how the time interval between pairs of

successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM

produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our

analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of

two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux

loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop

signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the

first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop

signal is close to its value at the time of the first ELM. VC 2014 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4881474]

I. INTRODUCTION

Edge localized modes (ELMs)1–5 are intense, short dura-

tion relaxation events observed in enhanced confinement

(H-mode) regimes in tokamak plasmas. Each ELM releases

particles and energy which load the plasma facing compo-

nents; scaled up to ITER,6 the largest such loads would be

unacceptable and thus ELM prediction, mitigation, and con-

trol are central to magnetic confinement fusion research. The

peeling-ballooning MHD instability of the plasma edge is

believed to underly ELM initiation, and there is local imag-

ing of precursor plasma fingers.7 However, there exists no

comprehensive understanding of the ELMing process from

start to finish, in terms of self-consistent nonlinear plasma

physics. Characterization of the dynamics of ELMing proc-

esses via their quantitative statistical signatures is relatively

novel.8–10 It may also be informative to quantify, as here, the

statistical signatures of correlation between ELMs and sig-

nals that capture global plasma dynamics.

In this paper, we perform direct time domain analysis of

ELM events in relation to high cadence signals from a sys-

tem scale diagnostic, the full flux loops in the divertor region

in JET. These full flux loop VLD2 and VLD3 signals are

proportional to the voltage induced by changes in poloidal

magnetic flux. We compare the full flux loop signals with si-

multaneous Be II emission data which are conventionally

used to identify ELM events. We focus on a sequence of JET

plasmas that have a steady flat top for �5 s and which all ex-

hibit intrinsic ELMing in that there is no deliberate intent to

control the ELMing process by external means. The noise

level in the Be II signal is such that here it is used just to

determine the ELM occurrence times. The full flux loop sig-

nals show a clear, characteristic large amplitude oscillatory

response to each ELM that is identified in the Be II data. The

characteristic oscillation timescale of these strongly damped

oscillations is �0.01 s. In this data, we identify a class of

prompt ELMs with occurrence times that all coincide with

the first, large amplitude cycle of this response signal. On

longer timescales, the flux loop signal amplitudes decay but

still have sufficiently large signal dynamic range, compared

to the noise, to allow the time evolving instantaneous phase

to be determined on timescales between one ELM and

the next. We find a correlation between this full flux loop

a)Electronic mail: S.C.Chapman@warwick.ac.uk
b)All the members of the JET-EFDA collaboration appear in the appendix of

F. Romanelli et al., Proceedings of the 24th IAEA Fusion Energy
Conference 2012, San Diego, CA, USA (International Atomic Energy

Agency, Vienna, 2012).
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instantaneous phase, and ELM occurrence time, for all the

non-prompt ELMs in these plasmas. ELMs are more likely

to occur when the instantaneous phase of these signals is

close to the value at the time of the previous ELM.

II. TIME SIGNATURES OF PAIRS OF SUCCESSIVE
ELMs

We analysed a sequence of JET plasmas, each with flat-

top H-mode duration of �5 s. These all exhibit intrinsic

ELMing in that there is no attempt to precipitate ELMs; the

only externally applied time varying fields are those pro-

duced by the control system. The parameters of each plasma

are given in Table I, where the last column indicates the time

interval over which we perform the data analysis reported

here. ELM occurrence times are inferred from the Be II sig-

nal, which we will compare with measurements of the induc-

tive voltage in the full flux loops VLD2 and VLD3. These

circle the JET tokamak toroidally at a location just below

and outside the divertor coils, see, e.g., Fig. 2 of Ref. 11. The

signal voltage is induced by changes in poloidal magnetic

flux through the surface encompassed by the loops.

We determine the ELM occurrence times tN by identify-

ing the peak of the Be II signal within each ELM using a

method similar to Refs. 10 and 12. We first calculate the 300

point running mean of the Be II signal excluding outliers,

which are defined as lying beyond 6 standard deviations. We

then consider the signal to contain an ELM only where it

exceeds this running mean by 3 standard deviations. To

ensure that the largest peak is selected in regions where there

are multiple local maxima, the ELM occurrence time is taken

to be that of the peak which is the maximum within a 50 data

point window. We have verified that this selects one maxi-

mum per ELM event with �98% effectiveness in these data-

sets. From the occurrence times tN of these peaks, the time

intervals between successive ELMs DtN ¼ tN � tN�1 are

found. These are plotted in Figure 1. The lower panel plots

the inter-ELM time intervals versus the value of the peak Be

II signal at that ELM occurrence time tN for all the ELMs in

all the plasmas considered here. Colour is used to differenti-

ate between ELMs from different JET plasmas, each plasma

being represented by a single colour. The upper panel plots a

histogram of the inter-ELM time intervals and its normal

kernel density estimate with a bandwidth of 0.001 s. For all

these plasmas, there is a lower cutoff at Dt � 0:01, and there

are vertical gaps at time intervals where ELMs occur less of-

ten (compare Ref. 10). There is a group of prompt ELMs

which are clustered approximately within 0:01 < Dt
< 0:015, and there is a second bunch within 0:015 < Dt
< 0:025. For longer Dt clear gaps cannot be seen in this size

of statistical sample. There is a trend, with a large amount of

scatter, for longer inter-ELM time intervals to correspond to

larger peak Be II. In particular, the prompt ELMs tend to

have smaller peak Be II.

Large ensemble statistical studies across many JET plas-

mas have revealed13 that some inter-ELM time intervals are

more likely than others. In the single plasmas discussed here,

the number of ELMs per plasma (�100) is too few to reveal

such detail. We find no statistical pattern between the length

of one inter-ELM interval and the next.

Figure 1 shows that the empirical probability distribu-

tion of time intervals between one ELM and the next has

structure. ELMs do not simply arrive at random times, nor

are they periodic. We now show that this structure can be

identified with features in the full flux loop signals. Signal

traces for representative pairs of successive ELMs are shown

in Figure 2. In order to compare the full flux loop and Be II

signals directly, we first normalize their amplitudes (here

and throughout) by dividing by a multiple (10 for Be II, 2 for

the VLD2 and 3) of their respective means over the flat-top

H-mode duration. The sign convention of the VLD2 and

TABLE I. Parameters for the JET plasmas analysed here.

Shot Ip (MA) BT (T) NBI (MW) D Flat top (s)

83769 2 2 12 1.2 48.5� 53.8

83770 2 2 12 1.2 49.0� 53.7

83771 2 2 12 1.2 48.5� 53.8

83772 2 2 12 1.2 48.5� 53.8

83773 2 2 12 1.2 48.5� 53.8

83774 2 2 12 1.2 48.5� 53.9

83775 2 2 12 1.2 48.5� 53.8

FIG. 1. Lower panel: Peak amplitude of Be II signal for each ELM plotted

versus the time interval between one ELM and the next DtN for the JET plas-

mas listed in Table I. Upper panel: histogram of these DtN (red) and kernel

density estimate of the histogram (black). Dashed black vertical lines indi-

cate the time intervals Dt ¼ 0:015; 0:025 s.
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VLD3 signals in these plots is chosen such that they have op-

posite polarity. The baseline signal value (its mean) varies

significantly from one ELM to the next; we therefore choose

a single time interval TA ¼ ½tN � 0:01; tN � 0:025�, relative

to each ELM occurrence time tN, within which we calculate

both signal means. This time interval is indicated on Figure

2 by the vertical dashed-dotted blue lines. We then subtract

this single mean value from the signal which is then plotted

in each panel.

The figure shows examples of prompt (a) and non-prompt

(b),(c) ELMs. Following each ELM, the figures show a char-

acteristic large amplitude oscillatory response in both of the

full flux loop signals, and in their difference, the first cycle of

which is on a timescale of �0.01 s. The second ELM shown

in Figure 2(a) occurs just after the first cycle of this full flux

loop response to the first ELM. For this pair of ELMs, the

inter-ELM time interval is within the vertical bunch clustered

within 0:01 < Dt < 0:015 in Figure 1. Examples of ELMs

separated by longer inter-ELM time intervals are shown in

Figures 2(b) and 2(c). The inter-ELM time interval lies within

the bunch clustered within 0:015 < Dt < 0:025 in Figure 2(b)

and is at Dt > 0:025 in Figure 2(c). We see that the ampli-

tudes of the VLD2 and 3 signals have time to decay over these

longer inter-ELM time intervals.

In Figures 3 and 4 we plot the occurrence times of all

the pairs of successive ELMs in JET plasma 83770, superim-

posed on time traces of the corresponding VLD3 signal. To

make a systematic comparison, we need to specify a zero

time t0 from which to plot the full flux loop signal following

the ELM. We could simply choose t0¼ tELM1, the time of the

first ELM as determined from the Be II signal. However, the

characteristic initial large amplitude oscillatory response to

an ELM, which is seen in both the full flux loop signals,

provides a better zero time t0. In particular, the times of the

extrema of the initial large amplitude response of the full

flux loop to an ELM are well defined, and can be determined

to a precision of three data points. The Be II signal has a rise

time to its peak of �10 data points and thus it only deter-

mines the ELM occurrence time to this precision. Both

full flux loop and Be II signals are at similar cadence. In

Figures 3 and 4, we overplot the VLD3 traces as a function

of time from t0, that is, versus t � t0. Each trace is thus

shifted in time, such that t � t0¼ 0 is at the first minimum in

the VLD3 signal following the first ELM. We also shift these

signals in amplitude such that the traces all pass through zero

at t¼ t0. The occurrence times of the first (red) and second

(green) ELMs are also shown. In Figure 3, we plot VLD3

signals and occurrence times for all 154 ELMs. There is

FIG. 2. Time traces for pairs of successive ELMs. Panels (a) are where the second ELM is prompt, it occurs within 0:01 < Dt < 0:015 of the preceding ELM,

and within the time when a large amplitude response is seen in the VLD2 and VLD3 traces. Non-prompt ELMs are shown in panels (b) where the second ELM

occurs within 0:015 < Dt < 0:025 of the preceding ELM and after the first cycle of the large amplitude response seen in the VLD 2 and VLD3 and panels (c)

where the second ELM occurs after Dt > 0:025 when the large amplitude response in the VLD2 and VLD3 has decayed. Upper panels: time traces of Be II in-

tensity (red), with VLD3 (blue, upper panel) and VLD2 (black, centre panel). The sign convention used here for the VLD2 and VLD3 is such that they have

opposite polarity. Data points are plotted as circles and lines are 3 point smoothed. The ELM occurrence times are indicated by vertical red and green lines.

Lower panel: difference (black) and sum (blue) of VLD2 and 3. In each panel, amplitudes are: (i) normalized to a long timescale average; (ii) zeroed to the av-

erage value just before the second ELM, calculated over the interval denoted by the pair of vertical dot-dash blue lines.

FIG. 3. ELM occurrence times for all ELMs in the �5 s flat-top of JET

plasma 83770 superimposed on the VLD3 signal. The panel plots VLD3 sig-

nals (black dotted lines) normalized as in Figure 2. ELM occurrence times

are marked on each VLD3 trace with red circles (first ELM) and green

circles (second ELM), these symbols/colours will be used in all subsequent

plots. These are plotted versus time t � t0, where t0 is at the first minimum

in the VLD3 signal following the first ELM. Amplitude is shifted such that

the traces pass through zero at t¼ t0.
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always a clear characteristic response in the VLD3 to the first

ELM. Figure 3 suggests that the bunched structure in the

occurrence times of the second ELM may correspond to spe-

cific phases in the VLD3 signal.

Figure 4 uses three separate panels to show the VLD3

traces and ELM times for pairs of ELMs with inter-ELM

times within each of the three clusters identified in Figure 1.

The format is as in Figure 3. The top panel of Figure 4 shows

all pairs of ELMs with inter-ELM time intervals Dt < 0:015.

These are the prompt ELMs, which can all be seen to arrive

after about one-and-a-half to one-and-three-quarters oscilla-

tions of the VLD3 response to the previous ELM. The centre

panel of Figure 4 plots pairs of ELMs with inter-ELM time

intervals 0:015 < Dt < 0:025. The second ELM can be seen

to occur around a specific phase of the VLD3 signal. The

lower panel shows pairs of ELMs for which Dt > 0:025.

Any phase relationship with the VLD3 signal is less clear

than in the upper panels of Figure 4. We obtain similar

results using the VLD2 signal. As can be seen from Figure 1,

all of the JET plasmas in this sequence (83 769–83 775) ex-

hibit the same structure in the statistics of their inter-ELM

time intervals, including prompt ELMs which occur in a

time interval 0:01 < Dt < 0:015 following the previous

ELM. The corresponding features, and characteristic time-

scales of the full flux loop signals following an ELM, shown

in Figures 2–4, are seen in all of these plasmas.

III. FULL FLUX LOOP INSTANTANEOUS PHASE

The above results suggest the existence of a link

between inter-ELM time intervals and the phase of the full

flux loop signals VLD2 and VLD3. Instead of inferring the

phase of the full flux loop signals from visual inspection of

the time series as above, we will now obtain it by direct time

domain analysis of these signals, and compare it with ELM

occurrence times.

An instantaneous phase can be inferred from the com-

plex analytic signal,14 which defines the instantaneous am-

plitude A(t) and frequency xðtÞ for a real signal S(t) such

that the instantaneous phase /ðtÞ ¼ xðtÞt. A time series S(t)
has a corresponding analytic signal defined by SðtÞ þ iHðtÞ
¼ A exp½i/ðtÞ�, where H(t) is the Hilbert transform14–17 of

S(t). The full flux loop signals are sufficiently strong that we

can use this method to determine their instantaneous phase.

The instantaneous phase cannot be directly extracted for the

Be II signal because its noise level is usually too high. In

principle, differentiating the time dependent phase would

yield the instantaneous frequency,18 but here the experimen-

tal data are too noisy. To obtain the phase of the full flux

loop signals, we work with 3 point spline-smoothed time se-

ries, mean-subtracted as in Figure 2, and compute the ana-

lytic signal by Hilbert transform for each inter-ELM time

interval of data. The signal analyzed must oscillate about

zero in order for the instantaneous phase to be well deter-

mined from the analytic signal, and we have tested that this

is the case for the local mean-subtracted signals described

above. The Hilbert transform requires a single-sided Fourier

transform which is approximated via fast Fourier transform

over the finite time window of the data. We choose an end-

time for the time window to avoid edge effects.

In Figures 5(a)–5(d), we plot the instantaneous phase of

the full flux loop signal versus time for all the ELMs in JET

plasma 83770. We again need to choose a zero time t0 from

which to measure changes in the full flux loop phase follow-

ing an ELM. In Figures 5(a) and 5(b), we set t0¼ tELM1, the

time of the first ELM as determined from the Be II signal.

The main figure panel plots time from t0, that is, Dt ¼ t� t0

versus the instantaneous phase difference D/ ¼ /ðtÞ � /ðt0Þ
of the VLD2 (Figure 5(a)) and VLD3 (Figure 5(b)) signals.

The first (red circle) and second (green circle) ELM times, as

determined from the Be II signal, are overplotted on each

corresponding VLD2 and 3 trace. On these plots, the first

ELM always has coordinates Dt ¼ 0 and D/ ¼ 0 by defini-

tion. The coordinates of the second ELM are Dt ¼ tELM2

�tELM1 and D/ ¼ /ðtELM2Þ � /ðtELM1Þ. Histograms are

shown of the Dt (top panel) and D/ (right panel) for all the

ELMs. The prompt ELMs with Dt < 0:015, indicated by

FIG. 4. ELM occurrence times in the �5 s flat-top of JET plasma 83770

superimposed on VLD3 traces, for which the inter-ELM time intervals are

in the range: (top) Dt < 0:015; (centre) 0:015 < Dt < 0:025; (bottom)

0:025 < Dt < 0:035. Each panel is in the same format as Figure 3.
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pink bars, are distinct in both arrival time and phase. All

other ELMs are phase bunched with a peak around zero

phase. The extrema of the large amplitude VLD2 and 3

responses to an ELM are determined more precisely in time

than the ELM time from the peak in the Be II signal. In

Figure 5(c), we replot Figure 5(a), but now we set t0 to the

first minimum in the VLD2 signal. In this plot, the phase

bunching can be seen to be better defined, and the peak is

shifted in phase because the phase difference is now deter-

mined over a shorter time interval.

The same phase bunching is found for all non-prompt

ELMs in the flat-top period of H-mode in all these plasmas.

The inter-ELM time intervals are not random: there is struc-

ture in the arrival time histograms. Our results show that

ELMs are more likely to occur when the full flux loop sig-

nals are at a specific phase with respect to that of the preced-

ing ELM.

We now establish that this is not be a trivial correlation.

An example of a trivial correlation would be that the ELM

arrival times were roughly periodic, or were at multiples of

some period, and the full flux loop signals were roughly sinu-

soidal. In such a case, one could re-order the time sequence

of the inter-ELM time intervals fDt1;Dt2; :::Dtj::DtNg

without changing the phase of the full flux loop signals at the

ELM arrival time.

We have generated a shuffled surrogate set of ELM ar-

rival times from the data as follows. The surrogate occurrence

time of an ELM is set as tN ¼ tN�1 þ Dtj, where the inter-

ELM time interval Dtj is now selected at random from the set

of observed inter-ELM time intervals in the flat top of a given

plasma. This is performed by randomly shuffling the index j,
which preserves all the inter-ELM times. Each observed

ELM pair then has a corresponding surrogate phase differ-

ence D/s ¼ /ðtsÞ � /ðt0Þ, where t0 is the arrival time of the

first ELM and the second ELM has surrogate arrival time

ts ¼ t0 þ Dtj. The Dtj is drawn from the randomly permutated

set of observed inter-ELM time intervals. Again, /ðtÞ is the

instantaneous phase of the VLD2 or 3 signal determined by

the same procedure discussed above. Under this operation,

the histogram of ELM arrival times shown in the preceding

figures is unchanged. This is shown in Figure 5(d), which is

identical to Figure 5(a) except that the sequence of ELM ar-

rival times has been replaced with our surrogate. On this plot,

we see that the statistical distribution of ELM arrival times is

unchanged but the phase bunching is completely lost. The

phases of the surrogate data do not show a statistically

FIG. 5. ELM occurrence times and VLD phase shown for the flat-top of JET plasma 83770. The format of each set of panels is as follows: Main panel:

VLD instantaneous phase, modulo 2p, plotted as a function of time following each ELM up to the occurrence time of the next ELM. The coordinates are time

Dt ¼ t� t0 and phase difference D/ ¼ /ðtÞ � /ðt0Þ. ELM occurrence times are marked on each VLD trace with yellow filled red circles (first ELM) and green

circles (second ELM). Right hand panel: histogram of VLD D/ at the time of all the second ELMs (blue), overplotted (pink) for the prompt ELMs with inter-

ELM time intervals Dt < 0:015. Top Panel: histogram of ELM occurrence times Dt ¼ t� t0 for the first ELM (red) and the second ELMs (green), overplotted

(pink) for the prompt ELMs. The frequency N of first ELM times has been divided by 10. The four sets of panels show: (a) VLD2, where t0 is the occurrence

time of the first ELM; (b) VLD3, where t0 is the occurrence time of the first ELM; (c) VLD2, now with t0 at the time of the flux loop first minimum; (d) VLD2,

where t0 is the occurrence time of the first ELM and the time order of the inter-ELM time intervals has been randomly shuffled.
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significant peak: for the histogram shown in Figure 5(d) the

mean counts per bin is 7.7 giving a normal estimated (“
ffiffiffiffi

N
p

”)

standard deviation of 6 � 3. The peak of the phase histo-

gram in Figure 5(a) has �30 counts per bin which is over six

standard deviations away from the surrogate.

This confirms that the phase of the full flux loop signals

contains information in addition to that of the statistics of

inter-ELM arrival times. The phase relationship that we have

found is therefore a non-trivial correlation. We have repeated

the above procedure for all the other JET plasmas in this

sequence, and we obtain the same results. Specifically, all of

these plasmas show the same phase relationship and this is

lost under the above surrogate procedure.

The above methods are only effective if the full flux loop

signals have good signal/noise, do not have too large a dynamic

range in response to all the ELMs, and if the mean of the signal

does not vary too rapidly. In order to obtain the phase via

Hilbert transform, mean subtraction is needed to centre the sig-

nal about zero over several cycles. The high rate of change of

instantaneous phase with time of the full flux loop signals (see,

e.g., Figure 5) requires well defined ELM occurrence times in

order to cleanly determine any phase relationship.

IV. CONCLUSIONS

We have performed a direct time domain analysis that

compares the occurrence times of ELM bursts as determined

from Be II emission with the instantaneous phase of the

VLD2 and 3 full flux loop signals in JET. We have focused

on a sequence of JET plasmas, in each of which there is a

steady flat-top for �5 s. These all exhibit intrinsic ELMing

in that there is no attempt to trigger ELMs; the only exter-

nally applied time varying fields are those required by the

control system to maintain the plasma.

The full flux loop signals show a clear oscillatory

response to an ELM on �0.01 s. We have identified a class

of prompt ELMs which all occur whilst this response to the

previous ELM is still at large amplitude, after about one-

and-a-half to one-and-three-quarters oscillations of this full

flux loop response signal. These prompt ELMs form a dis-

tinct cluster in the distribution of inter-ELM time intervals,

which is almost always in the range 0.01–0.015 s. This sug-

gests that the prompt ELMs may be directly precipitated by

the large scale plasma response to the previous ELM.

A �0.01 s timescale is characteristic of the integrated

response time of the control system.11 There are other

aspects of tokamak engineering physics that could also give

rise to effects on this timescale. These include, but are not re-

stricted to, the timescale of variations in the sharing of total

divertor coil current between the divertor coils driven by the

control system, and radial motion of the plasma with associ-

ated changes in the strike point location at divertor plates.

All other, non-prompt, ELMs arrive >0.015 s after the

preceding ELM, by which time the response to the previous

ELM in the full flux loop signals is decaying in amplitude.

We determined the difference in the instantaneous full flux

loop signal phase from the time of one ELM to the next. We

find that all of the non-prompt ELMs in all of these plasmas

tend to occur at times when this phase difference is

approximately zero: they are phase-bunched with respect to

the full flux loop signals. We verified that this result is not

simply a consequence of the time structure in the statistics of

inter-ELM time intervals; randomly shuffling the time order

of inter-ELM time intervals whilst preserving their probabil-

ity distribution destroys this phase bunching.

In this paper, we have presented a novel study of the

ELMing process in selected JET H-mode plasmas. Our analy-

sis of the time evolution of simultaneous Be II emission and

full flux loop VLD2 and VLD3 signals provides a fresh per-

spective on several aspects of this key phenomenon. This per-

spective combines experimental information that is essentially

local to the JET edge plasma (Be II) with information reflect-

ing the global state of the JET plasma (full flux loop). We

have identified a new class of prompt ELMs, which are seen

at distinct short inter-ELM time intervals. For these ELMs,

the initial ELM and its successor form a linked pair, in that

the second ELM arises near the end of the first, large ampli-

tude, cycle of the full flux loop response to the first ELM. The

two ELMs may be, in this sense, aspects of a single underly-

ing plasma phenomenon. Our investigation of non-prompt

ELMs, which occur at larger time separations, shows that the

times at which the second ELM occurs are bunched with

respect to the phase of the full flux loop signal. This may con-

tribute towards explaining the strong statistical bunching of

inter-ELM time intervals that was recently established from

careful analysis of a large number of quasi-identical JET plas-

mas.13 Our results for both prompt and non-prompt ELMs to-

gether suggest that deeper understanding is needed of the

links between the overall ELMing process and the evolving

global state of the plasma. It is not yet clear which properties

of the JET tokamak plasma fix the value of the characteristic

inter-ELM timescales that we have isolated. This is a complex

question for further investigation together with the possibility

that the full flux loop signal may contain precursor informa-

tion for ELM events. We note that this knowledge may assist

the design of experiments for ELM mitigation and control. It

might also be of value to establish whether the ELM bunching

phenomenology seen here is likely to occur in any ITER plas-

mas, and, if so, to determine the corresponding timescales.
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