129 research outputs found
Analysis of the prtP gene encoding porphypain, a cysteine proteinase of Porphyromonas gingivalis.
The cloning and sequencing of the gene encoding porphypain, a cysteine proteinase previously isolated from detergent extracts of the Porphyromonas gingivalis W12 cell surface, are described. The prtP gene encoded a unique protein of 1,732 amino acids, including a putative signal sequence for protein secretion. The predicted molecular mass for the mature protein was 186 kDa, which was close to the observed molecular mass of 180 kDa. There was one copy of prtP in the genomes of seven P. gingivalis strains examined. The gene was located 5' to a region with a high degree of homology to the insertion element IS1126 in P. gingivalis W12. The PrtP protein had regions of high homology to HagA, a hemagglutinin of P. gingivalis, and to several purported proteinases of P. gingivalis that have Arg-X specificity. A detailed comparison of genes encoding the latter and cpgR suggested that rgp-1, prpR1, prtR, agp, cpgR, and possibly prtH were derived from identical genetic loci. Although an rgp-1-like locus was detected in seven P. gingivalis strains by Southern blot analyses, agp and cpgR were not detected, not even in the strains from which they were originally isolated. In addition, at least 20 copies of a repeat region common to PrtP, the Rgp-1-like proteins, and HagA were observed in each of the seven genomes examined. The repeat region hybridization patterns for strains W83 and W50 were very similar, and they were identical for strains 381 and ATCC 33277, providing further evidence that these strains are closely related genetically
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Cellular localization of a Hsp90 homologue in Porphyromonas gingivalis
We previously reported an association between elevated serum antibody titers to the 90-kDa human heat shock protein (Hsp90), periodontal health and colonization by Porphyromonas gingivalis . In this study, we examined the cellular localization of the Hsp90 homologue of P. gingivalis . Cultures of P. gingivalis were heat-stressed (45°C) and examined for localization of the Hsp90 homologue. Heat stress induced a 4–5-fold increase in anti-Hsp90 antibody reactivity over that of the unstressed controls. Western blot analysis revealed two bands (44 and 68 kDa) that reacted with anti-Hsp90 antibodies. The 68-kDa band was heat-inducible, while the 44-kDa band was not. Immunogold staining revealed that the Hsp90 homologue localized principally to the membrane and extracellular vesicles. Subcellular fractionation confirmed that the Hsp90 homologue was primarily membrane-associated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72856/1/j.1574-6968.1999.tb08820.x.pd
The hemagglutinin gene A (hagA) of Porphyromonas gingivalis 381 contains four large, contiguous, direct repeats
Porphyromonas gingivalis is a gram-negative anaerobic bacterial species strongly associated with adult periodontitis. One of its distinguishing characteristics and putative virulence properties is the ability to agglutinate erythrocytes. We have previously reported the cloning of multiple hemagglutinin genes from P. gingivalis 381. Subsequent sequencing of clone ST 2 revealed that the cloned fragment contained only an internal portion of the gene which lacked both start and stop codons. We here report the cloning and sequencing of the entire gene, designated hagA, as well as its relationship to other genes of this species. By use of inverse PCR technology and the construction of several additional genomic libraries, the complete open reading frame of hagA was found to be 7,887 bp in length, encoding a protein of 2,628 amino acids with a molecular mass of 283.3 kDa, which is among the largest genes ever cloned from a prokaryote to date. Within its open reading frame, four large, contiguous, direct repeats (varying from 1,318 to 1,368 bp) were identified. The repeat unit (HArep), which is assumed to contain the hemagglutinin domain, is also present in other recently reported protease and hemagglutinin genes in P. gingivalis. Thus, we propose that hagA and the other genes which share the HArep sequence form a multigene family with hagA as a central member.</jats:p
Identification and sequence analysis of a methylase gene in Porphyromonas gingivalis.
A gene from the periodontal organism Porphyromonas gingivalis has been identified as encoding a DNA methylase. The gene, referred to as pgiIM, has been sequenced and found to contain a reading frame of 864 basepairs. The putative amino acid sequence of the encoded methylase was 288 amino acids, and shared 47% and 31% homology with the Streptococcus pneumoniae DpnII and E. coli Dam methylases, respectively. The activity and specificity of the pgi methylase (M.PgiI) was confirmed by cloning the gene into a dam- strain of E. coli (JM110) and performing a restriction analysis on the isolated DNA with enzymes whose activities depended upon the methylation state of the DNA. The data indicated that M.PgiI, like DpnII and Dam, methylated the adenine residue within the sequence 5'-GATC-3'
Systemic and mucosal immune responses in mice orally immunized with avirulent Salmonella typhimurium expressing a cloned Porphyromonas gingivalis hemagglutinin
Porphyromonas gingivalis produces a variety of virulence factors that may have a function in the periodontal disease process. Determination of the role of these various factors in pathogenesis and identification of a means for protecting the host from the destructive effects of this organism are areas of vigorous investigation. In this study we demonstrate the potential of avirulent Salmonella typhimurium strains to stimulate a specific systemic and mucosal immune response to a cloned P. gingivalis hemagglutinin (HagB). An avirulent strain of S. typhimurium, chi 4072, expressing the hagB gene of P. gingivalis 381 on the plasmid pDMD1 was intragastrically administered to BALB/c mice. These mice mounted a serum immunoglobulin G (IgG) and IgA primary response against the hagB gene product and a mucosal immune response as measured by evaluation of saliva. IgA antibodies were also detected in bile. These results demonstrate the feasibility of using attenuated S. typhimurium strains as carriers of P. gingivalis virulence factors for subsequent evaluation of the systemic and mucosal immune response against these antigens. This system will provide a means for evaluating the virulence factors of P. gingivalis for their suitability in the construction of potential vaccines.</jats:p
- …
