58 research outputs found

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    Travel Writing and Rivers

    Get PDF

    Potentiel toxique et structure génétique de populations de Microcystis en lien avec les différentes phases de son cycle de vie

    Get PDF
    The increasing eutrophication of aquatic ecosystems promotes the development of cyanobacteria, among which Microcystis is the most widespread in temperate regions. The ability of this cyanobacterium to produce a potent hepatotoxin, called the microcystin, represent a serious threat for both natural life and human health. Thus, understanding the factors determining the toxicity of Microcystis blooms is a major challenge of actual research. In this context, the main goal of this work was to study the temporal variability and the potential implication of Microcystis toxicity, at the scale of its annual life cycle. For that, it was necessary to consider more particularly, the least known parts of the cycle : the benthic survival phase, and the transition between the benthic and the planktonic phases, through the benthic recruitment and the sedimentation processes. Then, we studied the toxic potential of Microcystis populations through complementary approaches conducted at different spatio-temporal scales, by considering the genes controlling the synthesis of the microcystin, their transcription and the concentrations of microcystin. In parallel, the genetic structure of Microcystis populations was characterized in both benthic and planktonic compartments. By considering systematically the benthic life stage, we were first able to improve our knowledge on this phase of Microcystis development cycle. Thus, Microcystis is able to survive several years in deep sediments, without the population‟s toxic potential or genetic structure being degraded. On the other hand, at the sediment surface, the toxic potential and the genetic structure of the populations vary, in a similar range to what observed in the water column. Furthermore, this work also shed the light on the influence of benthic-pelagic transitions in the variability of the genetic structure and the toxic potential of the populations of Microcystis. Indeed, a genetic selection occurs during the benthic recruitment and the sedimentation processes. Although such a selection does not seem to rely on the toxic potential of the genotypes, it can greatly modify the toxic potential of both benthic and planktonic sub-populations of Microcystis.L‟eutrophisation croissante des Ă©cosystĂšmes aquatiques favorise le dĂ©veloppement des cyanobactĂ©ries, parmi lesquelles Microcystis est la plus reprĂ©sentĂ©e dans les rĂ©gions tempĂ©rĂ©es. La capacitĂ© de Microcystis Ă  produire une puissante hĂ©patotoxine, la microcystine, est Ă  l‟origine de diverses perturbations Ă©cologiques, et de nombreuses nuisances sanitaires. La comprĂ©hension des facteurs dĂ©terminant la toxicitĂ© des efflorescences de Microcystis constitue, de fait, un enjeu majeur des recherches actuelles. Dans ce contexte, l‟objectif premier de ce travail de thĂšse Ă©tait dâ€ŸĂ©tudier la variabilitĂ© temporelle et l‟implication potentielle de la toxicitĂ© de Microcystis Ă  lâ€ŸĂ©chelle de son cycle de dĂ©veloppement annuel. Pour cela, il Ă©tait nĂ©cessaire de considĂ©rer, en particulier, les parties les moins connues du cycle de dĂ©veloppement : la phase de survie benthique, et les transitions entre les phases benthique et planctonique, via les processus de recrutement et de sĂ©dimentation. Nous avons alors Ă©tudiĂ© le potentiel toxique des populations de Microcystis grĂące Ă  des approches complĂ©mentaires menĂ©es Ă  diffĂ©rentes Ă©chelles spatio-temporelles, en considĂ©rant Ă  la fois les gĂšnes impliquĂ©s dans la synthĂšse de microcystines, leur transcription et les concentrations en microcystines. Cette Ă©tude s‟est appuyĂ©e, en parallĂšle, sur la caractĂ©risation de la structure gĂ©nĂ©tique des populations de Microcystis dans les compartiments benthique et planctonique. La prise en compte systĂ©matique de la phase de vie benthique a tout d‟abord permis d‟amĂ©liorer nos connaissances sur cette phase du cycle de dĂ©veloppement de Microcystis. Ainsi, Microcystis peut survivre plusieurs annĂ©es en profondeur dans les sĂ©diments, sans que les populations ne perdent leur potentiel toxique, ou que leur structure gĂ©nĂ©tique soit altĂ©rĂ©e. En revanche, en surface des sĂ©diments, le potentiel toxique et la structure gĂ©nĂ©tique des populations sont variables, de maniĂšre similaire Ă  ce qui peut ĂȘtre observĂ© dans la colonne d‟eau. Enfin, ces travaux ont Ă©galement mis en Ă©vidence l‟influence des phases de transition entre l‟eau et les sĂ©diments dans la variabilitĂ© du potentiel toxique et de la structure gĂ©nĂ©tique des populations de Microcystis. Les processus de recrutement benthique et de sĂ©dimentation occasionnent, en effet, une sĂ©lection gĂ©nĂ©tique, qui, bien que paraissant indĂ©pendante du potentiel toxique des gĂ©notypes, peut grandement affecter le potentiel toxique des sous-populations benthiques et planctoniques de Microcystis

    Toxic potential and genetic structure in populations of Microcystis along its life cycle

    No full text
    L‟eutrophisation croissante des Ă©cosystĂšmes aquatiques favorise le dĂ©veloppement des cyanobactĂ©ries, parmi lesquelles Microcystis est la plus reprĂ©sentĂ©e dans les rĂ©gions tempĂ©rĂ©es. La capacitĂ© de Microcystis Ă  produire une puissante hĂ©patotoxine, la microcystine, est Ă  l‟origine de diverses perturbations Ă©cologiques, et de nombreuses nuisances sanitaires. La comprĂ©hension des facteurs dĂ©terminant la toxicitĂ© des efflorescences de Microcystis constitue, de fait, un enjeu majeur des recherches actuelles. Dans ce contexte, l‟objectif premier de ce travail de thĂšse Ă©tait dâ€ŸĂ©tudier la variabilitĂ© temporelle et l‟implication potentielle de la toxicitĂ© de Microcystis Ă  lâ€ŸĂ©chelle de son cycle de dĂ©veloppement annuel. Pour cela, il Ă©tait nĂ©cessaire de considĂ©rer, en particulier, les parties les moins connues du cycle de dĂ©veloppement : la phase de survie benthique, et les transitions entre les phases benthique et planctonique, via les processus de recrutement et de sĂ©dimentation. Nous avons alors Ă©tudiĂ© le potentiel toxique des populations de Microcystis grĂące Ă  des approches complĂ©mentaires menĂ©es Ă  diffĂ©rentes Ă©chelles spatio-temporelles, en considĂ©rant Ă  la fois les gĂšnes impliquĂ©s dans la synthĂšse de microcystines, leur transcription et les concentrations en microcystines. Cette Ă©tude s‟est appuyĂ©e, en parallĂšle, sur la caractĂ©risation de la structure gĂ©nĂ©tique des populations de Microcystis dans les compartiments benthique et planctonique. La prise en compte systĂ©matique de la phase de vie benthique a tout d‟abord permis d‟amĂ©liorer nos connaissances sur cette phase du cycle de dĂ©veloppement de Microcystis. Ainsi, Microcystis peut survivre plusieurs annĂ©es en profondeur dans les sĂ©diments, sans que les populations ne perdent leur potentiel toxique, ou que leur structure gĂ©nĂ©tique soit altĂ©rĂ©e. En revanche, en surface des sĂ©diments, le potentiel toxique et la structure gĂ©nĂ©tique des populations sont variables, de maniĂšre similaire Ă  ce qui peut ĂȘtre observĂ© dans la colonne d‟eau. Enfin, ces travaux ont Ă©galement mis en Ă©vidence l‟influence des phases de transition entre l‟eau et les sĂ©diments dans la variabilitĂ© du potentiel toxique et de la structure gĂ©nĂ©tique des populations de Microcystis. Les processus de recrutement benthique et de sĂ©dimentation occasionnent, en effet, une sĂ©lection gĂ©nĂ©tique, qui, bien que paraissant indĂ©pendante du potentiel toxique des gĂ©notypes, peut grandement affecter le potentiel toxique des sous-populations benthiques et planctoniques de Microcystis.The increasing eutrophication of aquatic ecosystems promotes the development of cyanobacteria, among which Microcystis is the most widespread in temperate regions. The ability of this cyanobacterium to produce a potent hepatotoxin, called the microcystin, represent a serious threat for both natural life and human health. Thus, understanding the factors determining the toxicity of Microcystis blooms is a major challenge of actual research. In this context, the main goal of this work was to study the temporal variability and the potential implication of Microcystis toxicity, at the scale of its annual life cycle. For that, it was necessary to consider more particularly, the least known parts of the cycle : the benthic survival phase, and the transition between the benthic and the planktonic phases, through the benthic recruitment and the sedimentation processes. Then, we studied the toxic potential of Microcystis populations through complementary approaches conducted at different spatio-temporal scales, by considering the genes controlling the synthesis of the microcystin, their transcription and the concentrations of microcystin. In parallel, the genetic structure of Microcystis populations was characterized in both benthic and planktonic compartments. By considering systematically the benthic life stage, we were first able to improve our knowledge on this phase of Microcystis development cycle. Thus, Microcystis is able to survive several years in deep sediments, without the population‟s toxic potential or genetic structure being degraded. On the other hand, at the sediment surface, the toxic potential and the genetic structure of the populations vary, in a similar range to what observed in the water column. Furthermore, this work also shed the light on the influence of benthic-pelagic transitions in the variability of the genetic structure and the toxic potential of the populations of Microcystis. Indeed, a genetic selection occurs during the benthic recruitment and the sedimentation processes. Although such a selection does not seem to rely on the toxic potential of the genotypes, it can greatly modify the toxic potential of both benthic and planktonic sub-populations of Microcystis

    Influence of light, sediment mixing, temperature and duration of the benthic life phase on the benthic recruitment of Microcystis

    No full text
    International audienceThe benthic recruitment of Microcystis was assessed in vitro in order (i) to compare the relative influence of the main abiotic factors, and (ii) to investigate the impact of the duration of the benthic life stage. Different benthic populations sampled in a 45 m deep artificial lake, with benthic life phases ranging from a few weeks to almost 3 years, were used to test the impact of three temperatures (4, 7 and 178C), the absence or presence of light and sediment mixing on Microcystis recruitment. In this study, sediment mixing was the only physical factor found to promote recruitment, indicating that passive resuspension plays a much more important role in the recruitment of Microcystis than light and temperature. Moreover, recruitment occurred from all benthic populations, including one that was nearly 3 years old. No difference in the proportion of recruited cells was observed before and after the usual overwintering period, suggesting that the annual benthic overwintering does not impair the ability of Microcystis to inoculate the water column in the following spring. However, in the oldest population, the proportions of recruited cells were lower under all the experimental conditions tested, indicating a decrease in the ability of older benthic populations of Microcystis to contribute to the recruitment process

    Limited influence of marine sediment lyophilization on prokaryotic community structure assessed via amplicon sequencing: an example from environmentally contrasted sediment layers in Toulon harbor (France)

    No full text
    International audienceSediment lyophilization is a common process that allows for long-term conservation and sharing of marine sediments for multiple downstream analyses. Although it is often used for geochemical studies, the effects of lyophilization on prokaryotic taxonomic diversity assessment remained to be assessed. Here, we tested the effect of lyophilization on microbial diversity assessment using three sediment layers corresponding to various sediment ages and chemical contamination levels sampled from a marine Mediterranean harbor. Duplicate DNA samples were extracted from wet frozen or lyophilized sediments, and 16S rRNA gene amplicon sequence variants were analyzed. We detected changes in community structure over depth linked to both dominant and less abundant taxa whether sediments were lyophilized or not. Data from both wet frozen and lyophilized sediments led us to conclude that historical chemical contamination of the sediment of Toulon Bay did not appear to be the main environmental variable shaping prokaryotic community structure on the vertical dimension, but that sediment diagenesis was. We conclude that sediment lyophilization is compatible with marine biogeochemical and ecotoxicological studies but that caution should be used when discussing small variations among samples

    Benthic survival of Microcystis: Long-term viability and ability to transcribe microcystin genes

    No full text
    International audienceMicrocystis is a microcystin-producing cyanobacterium known to proliferate in the water column of freshwater ecosystems, and to overwinter in the sediment. In this study, we demonstrate that microcystins can remain present in benthic cells buried in the sediment for long periods, and suggest that Microcystis is able to produce microcystins throughout its benthic survival. We investigated the viability and ability to transcribe one microcystin gene (mcyB) in three benthic populations of Microcystis containing microcystins. We chose deeply buried benthic populations that had been trapped in the sediment for periods ranging from several months to more than 6 years. Merely by revealing the presence of mcyB mRNA in every benthic population we investigated, we showed that benthic Microcystis could remain viable and able to initiate microcystin production after more than 6 years of benthic life. This finding also suggests that microcystins could be involved in the benthic survival mechanisms of Microcystis. The quantification of mcyB transcripts by RT-qPCR did not detect any visible influence of the duration of the benthic life stage, although the three populations did display different mcyB transcription levels
    • 

    corecore