47 research outputs found

    Die COVID-19-Pandemie in Steglitz-Zehlendorf – sozialrĂ€umliche Betrachtung des Infektionsgeschehens

    Get PDF
    Die laborbestĂ€tigten SARS-CoV-2-Falldaten des Berliner Bezirks Steglitz-Zehlendorf im Zeitraum 01.03.2020 bis 30.09.2021 wurden mit dem Ziel ausgewertet, genauere Erkenntnisse ĂŒber den zeitlichen Verlauf und die kleinrĂ€umige Verteilung des Infektionsgeschehens zu gewinnen. Es wurde außerdem geprĂŒft, ob ZusammenhĂ€nge zwischen dem Infektionsgeschehen und der Verteilung soziodemografischer Merkmale ĂŒber die verschiedenen SozialrĂ€ume erkennbar sind.Peer Reviewe

    Imaging biomarker roadmap for cancer studies.

    Get PDF
    Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.Development of this roadmap received support from Cancer Research UK and the Engineering and Physical Sciences Research Council (grant references A/15267, A/16463, A/16464, A/16465, A/16466 and A/18097), the EORTC Cancer Research Fund, and the Innovative Medicines Initiative Joint Undertaking (grant agreement number 115151), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in kind contribution

    Three-year performance of the IceAct telescopes at the IceCube Neutrino Observatory

    Get PDF
    IceAct is an array of compact Imaging Air Cherenkov Telescopes at the ice surface as part of the IceCube Neutrino Observatory. The telescopes, featuring a camera of 61 silicon photomultipliers and fresnel-lens-based optics, are optimized to be operated in harsh environmental conditions, such as at the South Pole. Since 2019, the first two telescopes have been operating in a stereoscopic configuration in the center of IceCube\u27s surface detector IceTop. With an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of improving current cosmic-ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors. First simulations indicate that the added information of a single telescope leads, e.g., to an improved discrimination between flux contributions from different primary particle species in the sensitive energy range. We review the performance and detector operations of the telescopes during the past 3 years (2020-2022) and give an outlook on the future of IceAct

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    A review of perspectives on the use of randomization in phase II oncology trials

    Get PDF
    Historically, phase II oncology trials assessed a treatment’s efficacy by examining its tumor response rate in a single-arm trial. Then, approximately 25 years ago, certain statistical and pharmacological considerations ignited a debate around whether randomized designs should be utilized instead. Here, based upon an extensive literature review, we review the arguments on either side of this debate. In particular, we describe the numerous factors that relate to the reliance of single-arm trials on historical control data, and detail the trial scenarios in which there was general agreement on preferential utilization of single-arm or randomized design frameworks, such as the use of single-arm designs when investigating treatments for rare cancers. We then summarize the latest figures on phase II oncology trial design, contrasting current design choices against historical recommendations on best practice. Ultimately, we find several ways in which the design of recently completed phase II trials does not appear to align with said recommendations. For example, despite advice to the contrary, only 66.2% of the assessed trials that employed progression-free survival as a primary or co-primary outcome used a randomized comparative design. In addition, we identify that just 28.2% of the considered randomized comparative trials came to a positive conclusion, as opposed to 72.7% of the single-arm trials. We conclude by describing a selection of important issues influencing contemporary design, framing this discourse in light of current trends in phase II, such as the increased use of biomarkers and recent interest in novel adaptive designs

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Production of platinum poor electrodes for PEMFC by electrochemical deposition

    No full text
    A new R2R capable process to produce platinum-poor fuel cells was presented in the lab scale. Platinum particles were deposited electrochemically on a mesoporous carbon carrier with various carbon carriers (Super P Li, Denka Black Li 400, Denka Black Li 435, Ketjenblack EC300). FESEM images showed particles in the range of 50 nm one the electrode surface. The catalyst containing electrodes were transferred via hot press from different metallic and polymeric decal materials on a polymer exchange membrane. First functional membrane electrode assemblies show the proof-of-principles of this new process.Ein neuer R2R-fĂ€higer Prozess fĂŒr die Herstellung platinumarmer Brennstoffzellen wurde im Labormaßstab etabliert. Platinumpartikel wurde elektrochemisch auf einen mesoporösen KohlenstofftrĂ€ger mit verschieden Leitrußen (Super P Li, Denka Black Li 400, Denka Black Li 435, Ketjenblack EC300) abgeschieden. FESEM-Aufnahmen zeigen Partikel in der GrĂ¶ĂŸenordnung von 50 nm auf der ElektrodenoberflĂ€che. Die katalysatorhaltige Elektrode wird mittels eines Heißpressverfahren auf eine Polymeraustauschmembran ĂŒbertragen. Erste funktionsfĂ€hige Membran-Elektroden-Assemblierungen zeigen die FunktionsfĂ€higkeit des Prozesses

    Production of platinum poor electrodes for PEMFC by electrochemical deposition

    No full text
    A new R2R capable process to produce platinum-poor fuel cells was presented in the lab scale. Platinum particles were deposited electrochemically on a mesoporous carbon carrier with various carbon carriers (Super P Li, Denka Black Li 400, Denka Black Li 435, Ketjenblack EC300). FESEM images showed particles in the range of 50 nm one the electrode surface. The catalyst containing electrodes were transferred via hot press from different metallic and polymeric decal materials on a polymer exchange membrane. First functional membrane electrode assemblies show the proof-of-principles of this new process.Ein neuer R2R-fĂ€higer Prozess fĂŒr die Herstellung platinumarmer Brennstoffzellen wurde im Labormaßstab etabliert. Platinumpartikel wurde elektrochemisch auf einen mesoporösen KohlenstofftrĂ€ger mit verschieden Leitrußen (Super P Li, Denka Black Li 400, Denka Black Li 435, Ketjenblack EC300) abgeschieden. FESEM-Aufnahmen zeigen Partikel in der GrĂ¶ĂŸenordnung von 50 nm auf der ElektrodenoberflĂ€che. Die katalysatorhaltige Elektrode wird mittels eines Heißpressverfahren auf eine Polymeraustauschmembran ĂŒbertragen. Erste funktionsfĂ€hige Membran-Elektroden-Assemblierungen zeigen die FunktionsfĂ€higkeit des Prozesses
    corecore