1,835 research outputs found

    Small mass asymptotic for the motion with vanishing friction

    Get PDF
    We consider the small mass asymptotic (Smoluchowski-Kramers approximation) for the Langevin equation with a variable friction coefficient. The friction coefficient is assumed to be vanishing within certain region. We introduce a regularization for this problem and study the limiting motion for the 1-dimensional case and a multidimensional model problem. The limiting motion is a Markov process on a projected space. We specify the generator and boundary condition of this limiting Markov process and prove the convergence.Comment: final version for publication, accepted by Stochastic Processes and their Application

    Smoluchowski-Kramers approximation in the case of variable friction

    Full text link
    We consider the small mass asymptotics (Smoluchowski-Kramers approximation) for the Langevin equation with a variable friction coefficient. The limit of the solution in the classical sense does not exist in this case. We study a modification of the Smoluchowski-Kramers approximation. Some applications of the Smoluchowski-Kramers approximation to problems with fast oscillating or discontinuous coefficients are considered.Comment: already publishe

    Large Deviations Principle for a Large Class of One-Dimensional Markov Processes

    Full text link
    We study the large deviations principle for one dimensional, continuous, homogeneous, strong Markov processes that do not necessarily behave locally as a Wiener process. Any strong Markov process XtX_{t} in R\mathbb{R} that is continuous with probability one, under some minimal regularity conditions, is governed by a generalized elliptic operator DvDuD_{v}D_{u}, where vv and uu are two strictly increasing functions, vv is right continuous and uu is continuous. In this paper, we study large deviations principle for Markov processes whose infinitesimal generator is ϵDvDu\epsilon D_{v}D_{u} where 0<ϵ10<\epsilon\ll 1. This result generalizes the classical large deviations results for a large class of one dimensional "classical" stochastic processes. Moreover, we consider reaction-diffusion equations governed by a generalized operator DvDuD_{v}D_{u}. We apply our results to the problem of wave front propagation for these type of reaction-diffusion equations.Comment: 23 page

    On second order elliptic equations with a small parameter

    Full text link
    The Neumann problem with a small parameter (1ϵL0+L1)uϵ(x)=f(x)forxG,.uϵγϵ(x)G=0(\dfrac{1}{\epsilon}L_0+L_1)u^\epsilon(x)=f(x) \text{for} x\in G, .\dfrac{\partial u^\epsilon}{\partial \gamma^\epsilon}(x)|_{\partial G}=0 is considered in this paper. The operators L0L_0 and L1L_1 are self-adjoint second order operators. We assume that L0L_0 has a non-negative characteristic form and L1L_1 is strictly elliptic. The reflection is with respect to inward co-normal unit vector γϵ(x)\gamma^\epsilon(x). The behavior of limϵ0uϵ(x)\lim\limits_{\epsilon\downarrow 0}u^\epsilon(x) is effectively described via the solution of an ordinary differential equation on a tree. We calculate the differential operators inside the edges of this tree and the gluing condition at the root. Our approach is based on an analysis of the corresponding diffusion processes.Comment: 28 pages, 1 figure, revised versio

    On diffusion in narrow random channels

    Full text link
    We consider in this paper a solvable model for the motion of molecular motors. Based on the averaging principle, we reduce the problem to a diffusion process on a graph. We then calculate the effective speed of transportation of these motors.Comment: 23 pages, 3 figures, comments are welcom
    corecore