378 research outputs found

    Increased levels of a pro-inflammatory IgG receptor in the midbrain of people with schizophrenia

    Get PDF
    Background: There is growing evidence that neuroinflammation may contribute to schizophrenia neuropathology. Elevated pro-inflammatory cytokines are evident in the midbrain from schizophrenia subjects, findings that are driven by a subgroup of patients, characterised as a “high inflammation” biotype. Cytokines trigger the release of antibodies, of which immunoglobulin G (IgG) is the most common. The level and function of IgG is regulated by its transporter (FcGRT) and by pro-inflammatory IgG receptors (including FcGR3A) in balance with the anti-inflammatory IgG receptor FcGR2B. Testing whether abnormalities in IgG activity contribute to the neuroinflammatory abnormalities schizophrenia patients, particularly those with elevated cytokines, may help identify novel treatment targets. Methods: Post-mortem midbrain tissue from healthy controls and schizophrenia cases (n = 58 total) was used to determine the localisation and abundance of IgG and IgG transporters and receptors in the midbrain of healthy controls and schizophrenia patients. Protein levels of IgG and FcGRT were quantified using western blot, and gene transcript levels of FcGRT, FcGR3A and FcGR2B were assessed using qPCR. The distribution of IgG in the midbrain was assessed using immunohistochemistry and immunofluorescence. Results were compared between diagnostic (schizophrenia vs control) and inflammatory (high vs low inflammation) groups. Results: We found that IgG and FcGRT protein abundance (relative to β-actin) was unchanged in people with schizophrenia compared with controls irrespective of inflammatory subtype. In contrast, FcGRT and FcGR3A mRNA levels were elevated in the midbrain from “high inflammation” schizophrenia cases (FcGRT; p = 0.02, FcGR3A; p < 0.0001) in comparison to low-inflammation patients and healthy controls, while FcGR2B mRNA levels were unchanged. IgG immunoreactivity was evident in the midbrain, and approximately 24% of all individuals (control subjects and schizophrenia cases) showed diffusion of IgG from blood vessels into the brain. However, the intensity and distribution of IgG was comparable across schizophrenia cases and control subjects. Conclusion: These findings suggest that an increase in the pro-inflammatory Fcγ receptor FcGR3A, rather than an overall increase in IgG levels, contribute to midbrain neuroinflammation in schizophrenia patients. However, more precise information about IgG-Fcγ receptor interactions is needed to determine their potential role in schizophrenia neuropathology

    Spatially and genetically distinct African trypanosome virulence variants defined by host interferon-g response

    Get PDF
    We describe 2 spatially distinct foci of human African trypansomiasis in eastern Uganda. The Tororo and Soroti foci of &lt;i&gt;Trypanosoma brucei rhodesiense&lt;/i&gt; infection were genetically distinct as characterized by 6 microsatellite and 1 minisatellite polymorphic markers and were characterized by differences in disease progression and host-immune response. In particular, infections with the Tororo genotype exhibited an increased frequency of progression to and severity of the meningoencephalitic stage and higher plasma interferon (IFN)–γ concentration, compared with those with the Soroti genotype. We propose that the magnitude of the systemic IFN-γ response determines the time at which infected individuals develop central nervous system infection and that this is consistent with the recently described role of IFN-γ in facilitating blood-brain barrier transmigration of trypanosomes in an experimental model of infection. The identification of trypanosome isolates with differing disease progression phenotypes provides the first field-based genetic evidence for virulence variants in T. &lt;i&gt;brucei rhodesiense&lt;/i&gt;

    Identification and validation of oncologic miRNA biomarkers for Luminal A-like breast cancer

    Get PDF
    Introduction: Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting. Methods: Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n=54) and controls (n=56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n=10 Luminal A-like; n=10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n=44 Luminal A; n=46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated. Results: Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis ( miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652 ). The biomarker potential of 4 miRNAs ( miR-29a, miR-181a , miR-223 and miR-652 ) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p=0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs ( miR-29a, miR-181a and miR-652 ) could reliably differentiate between cancers and controls with an AUC of 0.80. Conclusion: This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype- specific breast tumor detection

    Population genetics of trypanosoma brucei rhodesiense: clonality and diversity within and between foci

    Get PDF
    African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda) and Southern (Malawi) Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics

    Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression

    Get PDF
    Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle. © 2012 Clause et al

    B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response

    Get PDF
    We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al

    SPEM dysfunction and general schizotypy as measured by the SSQ: a controlled study

    Get PDF
    Abstract Background SPEM dysfunction is a well-known phenomenon in schizophrenia. The principal aim of the present study was to examine whether SPEM dysfunction is already observable in subjects scoring high on a specific measure of schizotypy (SSQ General Schizotypy) that was selected because of its intimate relationship with schizophrenic prodromal unfolding. Methods Applying ANOVAs, we determined the relationship of subjects' scores on SSQ General Schizotypy and eye movements elicited by targets of different speed. We also examined whether there exists an association between our schizotypy measure and pupil size. Results We found more SPEM dysfunction in subjects scoring high on SSQ General Schizotypy than in subjects scoring average on that factor, irrespective of the speed of the target. No relationship was found between baseline pupil size and General Schizotypy. Conclusion The present study provides additional evidence that SPEM dysfunction is associated with schizotypic features that precede the onset of schizophrenia and is already observable in general population subjects that show these features

    Generalized cerebral atrophy seen on MRI in a naturally exposed animal model for creutzfeldt-jakob disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Magnetic resonance imaging has been used in the diagnosis of human prion diseases such as sCJD and vCJD, but patients are scanned only when clinical signs appear, often at the late stage of disease. This study attempts to answer the questions "Could MRI detect prion diseases before clinical symptoms appear?, and if so, with what confidence?"</p> <p>Methods</p> <p>Scrapie, the prion disease of sheep, was chosen for the study because sheep can fit into a human sized MRI scanner (and there were no large animal MRI scanners at the time of this study), and because the USDA had, at the time of the study, a sizeable sample of scrapie exposed sheep, which we were able to use for this purpose. 111 genetically susceptible sheep that were naturally exposed to scrapie were used in this study.</p> <p>Results</p> <p>Our MRI findings revealed no clear, consistent hyperintense or hypointense signal changes in the brain on either clinically affected or asymptomatic positive animals on any sequence. However, in all 37 PrP<sup>Sc </sup>positive sheep (28 asymptomatic and 9 symptomatic), there was a greater ventricle to cerebrum area ratio on MRI compared to 74 PrP<sup>Sc </sup>negative sheep from the scrapie exposed flock and 6 control sheep from certified scrapie free flocks as defined by immunohistochemistry (IHC).</p> <p>Conclusions</p> <p>Our findings indicate that MRI imaging can detect diffuse cerebral atrophy in asymptomatic and symptomatic sheep infected with scrapie. Nine of these 37 positive sheep, including 2 one-year old animals, were PrP<sup>Sc </sup>positive only in lymph tissues but PrP<sup>Sc </sup>negative in the brain. This suggests either 1) that the cerebral atrophy/neuronal loss is not directly related to the accumulation of PrP<sup>Sc </sup>within the brain or 2) that the amount of PrP<sup>Sc </sup>in the brain is below the detectable limits of the utilized immunohistochemistry assay. The significance of these findings remains to be confirmed in human subjects with CJD.</p

    Deficits in visuo-spatial working memory, inhibition and oculomotor control in boys with ADHD and their non-affected brothers.

    Get PDF
    Few studies have assessed visuo-spatial working memory and inhibition in attention-deficit/hyperactivity disorder (ADHD) by recording saccades and consequently little additional knowledge has been gathered on oculomotor functioning in ADHD. Moreover, this is the first study to report the performance of non-affected siblings of children with ADHD, which may shed light on the familiality of deficits. A total of 14 boys with ADHD, 18 non-affected brothers, and 15 control boys aged 7-14 years, were administered a memory-guided saccade task with delays of three and seven seconds. Familial deficits were found in accuracy of visuo-spatial working memory, percentage of anticipatory saccades, and tendency to overshoot saccades relative to controls. These findings suggest memory-guided saccade deficits may relate to a familial predisposition for ADHD

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore