1,387 research outputs found

    Limits To The Use Of Threatened Species Lists

    Get PDF
    Threatened species lists are designed primarily to provide an easily understood qualitative estimate of risk of extinction. Although these estimates of risk can be accurate, the lists have inevitably become linked to several decision-making processes. There are four ways in which such lists are commonly used: to set priorities for resource allocation for species recovery; to inform reserve system design; to constrain development and exploitation; and to report on the state of the environment. The lists were not designed for any one of these purposes, and consequently perform some of them poorly. We discuss why, if and how they should be used to achieve these purposes

    The complex TIE between macrophages and angiogenesis

    Get PDF
    Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway

    Predictive Nomogram for Recurrence following Surgery for Nonmetastatic Renal Cell Cancer with Tumor Thrombus

    Get PDF
    Purpose Following surgery for nonmetastatic renal cell carcinoma with tumor thrombus the risk of recurrence is significant but variable among patients. The purpose of this study was to develop and validate a predictive nomogram for individual estimation of recurrence risk following surgery for renal cell carcinoma with venous tumor thrombus. Materials and Methods Comprehensive data were collected on patients with nonmetastatic renal cell carcinoma and thrombus treated at a total of 5 institutions from 2000 to 2013. Independent predictors of recurrent renal cell carcinoma from a competing risks analysis were developed into a nomogram. Predictive accuracy was compared between the development and validation cohorts, and between the nomogram and the UISS (UCLA Integrated Staging System, SSIGN (Stage, Size, Grade and Necrosis) and Sorbellini models. Results A total of 636 patients were analyzed, including the development cohort of 465 and the validation cohort of 171. Independent predictors, including tumor diameter, body mass index, preoperative hemoglobin less than the lower limit of normal, thrombus level, perinephric fat invasion and nonclear cell histology, were developed into a nomogram. Estimated 5-year recurrence-free survival was 49% overall. Five-year recurrence-free survival in patients with 0, 1, 2 and more than 2 risk factors was 77%, 53%, 47% and 20%, respectively. Predictive accuracy was similar in the development and validation cohorts (AUC 0.726 and 0.724, respectively). Predictive accuracy of the thrombus nomogram was higher than that of the UISS (AUC 0.726 vs 0.595, p = 0.001), SSIGN (AUC 0.713 vs 0.612, p = 0.04) and Sorbellini models (AUC 0.709 vs 0.638, p = 0.02). Conclusions We present a predictive nomogram for postoperative recurrence in patients with nonmetastatic renal cell carcinoma with venous thrombus. Improving individual postoperative risk assessment may allow for better design and analysis of future adjuvant clinical trials

    Cross-Disciplinarity in the Advance of Antarctic Ecosystem Research

    Get PDF
    The biodiversity, ecosystem services and climate variability of the Antarctic continent, and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaption of the Scientific Committee on Antarctic Research, which focused on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas, and first steps in their implementation, were clustered into eight themes, ranging from scale problems, risk maps, organism and ecosystem responses to multiple environmental changes, to evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in the research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. New strategies in academic education are proposed. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind

    EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization for photothermal therapy

    Get PDF
    The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer -coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100-200 nm) showed a plasmon absorption band located within the near infrared range (650-900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0-25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue.Support was provided by: Fundacao para a Ciencia e Tecnologia (FCT) for the financial support under the project reference PTDC/BBB-BMC/0611/2012 [https://www.fct.pt/apoios/projectos)]. The work at CBMA was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) [https://www.fct.pt/apoios/projectos]; European Commission through the project H2020-644242-SAPHELY (https://saphely.eu/project.php) and the project H2020-634013-2-PHOCNOSIS [http://cordis.europa.eu/project/rcn/193268_en.html].The authors would like to thank Fundacao para a Ciencia e Tecnologia (FCT) for the financial support under the project reference PTDC/BBB-BMC/0611/2012. The work at CBMA was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI). The authors acknowledge the funding from the European Commission through the project H2020-644242-SAPHELY and the project H2020-634013-2-PHOCNOSIS. Finally, the authors would also like to thank the master student Joao Lopes from Universidade Lusofona (Portugal) for the help with in vitro cytotoxic assays. Isabel Correia acknowledges FCT for Investigator FCT contract.info:eu-repo/semantics/publishedVersio

    Localization and Broadband Follow-Up of the Gravitational-Wave Transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser InterferometerGravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimatesof the time, significance, and sky location of the event were shared with 63 teams of observers covering radio,optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter wedescribe the low-latency analysis of the GW data and present the sky localization of the first observed compactbinary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-rayCoordinates Network circulars, giving an overview of the participating facilities, the GW sky localizationcoverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger,there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadbandcampaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broadcapabilities of the transient astronomy community and the observing strategies that have been developed to pursueneutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-upcampaign are being disseminated in papers by the individual teams

    Interaction of Pattern Recognition Receptors with Mycobacterium Tuberculosis.

    Get PDF
    Tuberculosis (TB) is considered a major worldwide health problem with 10 million new cases diagnosed each year. Our understanding of TB immunology has become greater and more refined since the identification of Mycobacterium tuberculosis (MTB) as an etiologic agent and the recognition of new signaling pathways modulating infection. Understanding the mechanisms through which the cells of the immune system recognize MTB can be an important step in designing novel therapeutic approaches, as well as improving the limited success of current vaccination strategies. A great challenge in chronic disease is to understand the complexities, mechanisms, and consequences of host interactions with pathogens. Innate immune responses along with the involvement of distinct inflammatory mediators and cells play an important role in the host defense against the MTB. Several classes of pattern recognition receptors (PRRs) are involved in the recognition of MTB including Toll-Like Receptors (TLRs), C-type lectin receptors (CLRs) and Nod-like receptors (NLRs) linked to inflammasome activation. Among the TLR family, TLR1, TLR2, TLR4, and TLR9 and their down-stream signaling proteins play critical roles in the initiation of the immune response in the pathogenesis of TB. The inflammasome pathway is associated with the coordinated release of cytokines such as IL-1β and IL-18 which also play a role in the pathogenesis of TB. Understanding the cross-talk between these signaling pathways will impact on the design of novel therapeutic strategies and in the development of vaccines and immunotherapy regimes. Abnormalities in PRR signaling pathways regulated by TB will affect disease pathogenesis and need to be elucidated. In this review we provide an update on PRR signaling during M. tuberculosis infection and indicate how greater knowledge of these pathways may lead to new therapeutic opportunities

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore