335 research outputs found
Effects of Endotoxaemia on Protein Metabolism in Rat Fast-Twitch Skeletal Muscle and Myocardium
It is unclear if the rat myocardium undergoes the same rapid reductions in protein content that are classically observed in fast-twitch skeletal muscle during endotoxaemia.To investigate this further, and to determine if there is any divergence in the response of skeletal muscle and myocardium in the mechanisms that are thought to be largely responsible for eliciting changes in protein content, Sprague Dawley rats were implanted with vascular catheters and administered lipopolysaccharide (LPS; 150 microg kg(-1) h(-1)) intravenously for 2 h, 6 h or 24 h (saline administered control animals were also included), after which the extensor digitorum longus (EDL) and myocardium were removed under terminal anaesthesia. The protein-to-DNA ratio, a marker of protein content, was significantly reduced in the EDL following 24 h LPS administration (23%; P<0.05), but was no different from controls in the myocardium. At the same time point, a significant increase in MAFbx/atrogin-1 and MuRF1 mRNA (3.7+/-0.7- and 19.5+/-1.9-fold increase vs. controls, respectively; P<0.05), in addition to protein levels of alpha1-3, 5-7 subunits of the 20S proteasome, were observed in EDL but not myocardium. In contrast, elevations in phosphorylation of p70 S6K residues Thr(421)/Ser(424), and 4E-BP1 residues Thr(37)/Thr(46) (P<0.05), consistent with an elevation in translation initiation, were seen exclusively in the myocardium of LPS-treated animals.In summary, these findings suggest that the myocardium does not undergo the same catabolic response as skeletal muscle during early endotoxaemia, partly due to the absence of transcriptional and signalling events in the myocardium typically associated with increased muscle proteolysis and the suppression of protein synthesis
Site-Selective Modification of Peptides and Proteins via Interception of Free-Radical-Mediated Dechalcogenation
© 2020 The Authors. Published by Wiley-VCH GmbH The development of site-selective chemistry targeting the canonical amino acids enables the controlled installation of desired functionalities into native peptides and proteins. Such techniques facilitate the development of polypeptide conjugates to advance therapeutics, diagnostics, and fundamental science. We report a versatile and selective method to functionalize peptides and proteins through free-radical-mediated dechalcogenation. By exploiting phosphine-induced homolysis of the C−Se and C−S bonds of selenocysteine and cysteine, respectively, we demonstrate the site-selective installation of groups appended to a persistent radical trap. The reaction is rapid, operationally simple, and chemoselective. The resulting aminooxy linker is stable under a variety of conditions and selectively cleavable in the presence of a low-oxidation-state transition metal. We have explored the full scope of this reaction using complex peptide systems and a recombinantly expressed protein
Site-Selective Installation of Nϵ-Modified Sidechains into Peptide and Protein Scaffolds via Visible-Light-Mediated Desulfurative C–C Bond Formation
Post-translational modifications (PTMs) enhance the repertoire of protein function and mediate or influence the activity of many cellular processes. The preparation of site-specifically and homogeneously modified proteins, to apply as tools to understand the biological role of PTMs, is a challenging task. Herein, we describe a visible-light-mediated desulfurative C(sp3)–C(sp3) bond forming reaction that enables the site-selective installation of Nϵ-modified sidechains into peptides and proteins of interest. Rapid, operationally simple, and tolerant to ambient atmosphere, we demonstrate the installation of a range of lysine (Lys) PTMs into model peptide systems and showcase the potential of this technology by site-selectively installing an NϵAc sidechain into recombinantly expressed ubiquitin (Ub)
p62 overexpression induces TDP-43 cytoplasmic mislocalisation, aggregation and cleavage and neuronal death
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) that exist on a spectrum of neurodegenerative disease. A hallmark of pathology is cytoplasmic TDP-43 aggregates within neurons, observed in 97% of ALS cases and ~ 50% of FTLD cases. This mislocalisation from the nucleus into the cytoplasm and TDP-43 cleavage are associated with pathology, however, the drivers of these changes are unknown. p62 is invariably also present within these aggregates. We show that p62 overexpression causes TDP-43 mislocalisation into cytoplasmic aggregates, and aberrant TDP-43 cleavage that was dependent on both the PB1 and ubiquitin-associated (UBA) domains of p62. We further show that p62 overexpression induces neuron death. We found that stressors (proteasome inhibition and arsenic) increased p62 expression and that this shifted the nuclear:cytoplasmic TDP-43 ratio. Overall, our study suggests that environmental factors that increase p62 may thereby contribute to TDP-43 pathology in ALS and FTLD
Malignancy risk analysis in patients with inadequate fine needle aspiration cytology (FNAC) of the thyroid
Background
Thyroid fine needle aspiration cytology (FNAC) is the standard diagnostic modality for thyroid nodules. However, it has limitations among which is the incidence of non-diagnostic results (Thy1). Management of cases with repeatedly non-diagnostic FNAC ranges from simple observation to surgical intervention. We aim to evaluate the incidence of malignancy in non-diagnostic FNAC, and the success rate of repeated FNAC. We also aim to evaluate risk factors for malignancy in patients with non-diagnostic FNAC.
Materials and Methods
Retrospective analyses of consecutive cases with thyroid non diagnostic FNAC results were included.
Results
Out of total 1657 thyroid FNAC done during the study period, there were 264 (15.9%) non-diagnostic FNAC on the first attempt. On repeating those, the rate of a non-diagnostic result on second FNAC was 61.8% and on third FNAC was 47.2%. The overall malignancy rate in Thy1 FNAC was 4.5% (42% papillary, 42% follicular and 8% anaplastic), and the yield of malignancy decreased considerably with successive non-diagnostic FNAC. Ultrasound guidance by an experienced head neck radiologist produced the lowest non-diagnostic rate (38%) on repetition compared to US guidance by a generalist radiologist (65%) and by non US guidance (90%).
Conclusions
There is a low risk of malignancy in patients with a non-diagnostic FNAC result, commensurate to the risk of any nodule. The yield of malignancy decreased considerably with successive non-diagnostic FNAC
Impact of neuroradiologist second opinion on staging and management of head and neck cancer
OBJECTIVE: Patients with head and neck cancer frequently present to academic tertiary referral centers with imaging studies that have been performed and interpreted elsewhere. At our institution, these outside head and neck imaging studies undergo formal second opinion reporting by a fellowship-trained academic neuroradiologist with expertise in head and neck imaging. The purpose of this study was to determine the impact of this practice on cancer staging and patient management. METHODS: Our institutional review board approved the retrospective review of randomized original and second opinion reports for 94 consecutive cases of biopsy proven or clinically suspected head and neck cancer in calendar year 2010. Discrepancy rates for staging and recommended patient management were calculated and, for the 32% (30/94) of cases that subsequently went to surgery, the accuracies of the reports were determined relative to the pathologic staging gold standard. RESULTS: Following neuroradiologist second opinion review, the cancer stage changed in 56% (53/94) of cases and the recommended management changed in 38% (36/94) of patients with head and neck cancer. When compared to the pathologic staging gold standard, the second opinion was correct 93% (28/30) of the time. CONCLUSION: In a majority of patients with head and neck cancer, neuroradiologist second opinion review of their outside imaging studies resulted in an accurate change in their cancer stage and this frequently led to a change in their management plan
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Diagnostic Accuracy of Fine Needle Biopsy for Metastatic Melanoma and Its Implications for Patient Management
The use of fine needle biopsy (FNB) for the diagnosis of metastatic melanoma can lead to the early removal and treatment of metastases, reduce the frequency of unnecessary surgery, and facilitate the staging of patients enrolled in clinical trials of adjuvant therapies. In this study, the accuracy of FNB for the diagnosis of metastatic melanoma was investigated. A retrospective cohort study was performed with 2204 consecutive FNBs performed on 1416 patients known or suspected to have metastatic melanoma. Almost three-quarters (1582) of these FNBs were verified by either histopathologic diagnosis following surgical resection or clinical follow-up. FNB for metastatic melanoma was found to have an overall sensitivity of 92.1% and a specificity of 99.2%, with 69 false-negative and 5 false-positive findings identified. The sensitivity of the procedure was found to be influenced by six factors. The use of immunostains, reporting of the specimen by a cytopathologist who had reported >500 cases, lesions located in the skin and subcutis, and patients with ulcerated primary melanomas were factors associated with a significant improvement in the sensitivity of the test. However, FNBs performed in masses located in lymph nodes of the axilla and FNBs that required more than one needle pass to obtain a sample were far more likely to result in false-negative results. FNB is a rapid, accurate, and clinically useful technique for the assessment of disease status in patients with suspected metastatic melanoma
Activity Dependent Protein Degradation Is Critical for the Formation and Stability of Fear Memory in the Amygdala
Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses
The new molecular markers DDIT3, STT3A, ARG2 and FAM129A are not useful in diagnosing thyroid follicular tumors
Preoperative characterization of thyroid follicular lesions is challenging. Fine-needle aspiration specimens cannot differentiate follicular carcinomas from benign follicular neoplasias. Recently, promising markers have been detected using modern molecular techniques. We conducted a retrospective study to confirm the usefulness of immunohistochemical staining for the protein markers, DDIT3, STT3A (ITM1), ARG2 and FAM129A (C1orf24) in separating benign and malignant thyroid follicular lesions. Formalin-fixed, paraffin-embedded thyroid tissue from 30 in-house cases (15 follicular carcinomas and 15 follicular adenomas), as well as 8 follicular carcinomas and 21 follicular adenomas on tissue microarray slides were stained immunohistochemically for DDIT3, STT3A, ARG2 and FAM129A expression. Control tissue consisted of thyroid parenchyma adjacent to the tumors and 11 separate cases of normal thyroid parenchyma. All in-house cases of follicular adenomas, follicular carcinomas and adjacent normal thyroid tissue showed positive immunostaining with anti-DDIT3 and anti-STT3A. Anti-ARG2 and anti-FAM129A polyclonal antibodies showed positive staining in 20 and 60% of in-house follicular adenomas, and 40 and 87% of in-house follicular carcinomas, respectively. Monoclonal anti-FAM129A demonstrated positive staining in 13 and 33% of in-house follicular adenomas and follicular carcinomas, respectively. Polyclonal anti-DDIT3, -STT3A and -FAM129A antibodies showed positive staining in all tissue microarray slides of follicular carcinoma and in 76, 85 and 81% of the follicular adenomas, respectively. Monoclonal anti-STT3A stained 81% of the follicular adenoma cores. Anti-ARG2 stained positive in 13% of follicular carcinomas and 10% of follicular adenomas on the tissue microarray slides. In conclusion, DDIT3, STT3A, ARG2 and FAM129A immunohistochemistry does not appear to be useful in the diagnosis of thyroid follicular neoplasias, as they do not reliably distinguish follicular thyroid carcinoma from follicular thyroid adenoma
- …