271 research outputs found

    Automatic Planning and Control of Robot Natural Motion Via Feedback

    Get PDF
    A feedback control strategy for the command of robot motion includes some limited automatic planning capabilities. These may be seen as sequential solution algorithms implemented by the robot arm interpreted as a mechanical analog computer. This perspective lends additional insight into the manner in which such control techniques may fail, and motivates a fresh look at requisite sensory capabilities. For more information: Kod*La

    Neural network control of a rehabilitation robot by state and output feedback

    Get PDF
    In this paper, neural network control is presented for a rehabilitation robot with unknown system dynamics. To deal with the system uncertainties and improve the system robustness, adaptive neural networks are used to approximate the unknown model of the robot and adapt interactions between the robot and the patient. Both full state feedback control and output feedback control are considered in this paper. With the proposed control, uniform ultimate boundedness of the closed loop system is achieved in the context of Lyapunov’s stability theory and its associated techniques. The state of the system is proven to converge to a small neighborhood of zero by appropriately choosing design parameters. Extensive simulations for a rehabilitation robot with constraints are carried out to illustrate the effectiveness of the proposed control

    Structure Extraction in Printed Documents Using Neural Approaches

    Get PDF
    This paper addresses the problem of layout and logical structure extraction from image documents. Two classes of approaches are first studied and discussed in general terms: data-driven and model-driven. In the latter, some specific approaches like rule-based or formal grammar are usually studied on very stereotyped documents providing honest results, while in the former artificial neural networks are often considered for small patterns with good results. Our understanding of these techniques let us to believe that a hybrid model is a more appropriate solution for structure extraction. Based on this standpoint, we proposed a Perceptive Neural Network based approach using a static topology that possesses the characteristics of a dynamic neural network. Thanks to its transparency, it allows a better representation of the model elements and the relationships between the logical and the physical components. Furthermore, it possesses perceptive cycles providing some capacities in data refinement and correction. Tested on several kinds of documents, the results are better than those of a static Multilayer Perceptron

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Automatic Morphological Subtyping Reveals New Roles of Caspases in Mitochondrial Dynamics

    Get PDF
    Morphological dynamics of mitochondria is associated with key cellular processes related to aging and neuronal degenerative diseases, but the lack of standard quantification of mitochondrial morphology impedes systematic investigation. This paper presents an automated system for the quantification and classification of mitochondrial morphology. We discovered six morphological subtypes of mitochondria for objective quantification of mitochondrial morphology. These six subtypes are small globules, swollen globules, straight tubules, twisted tubules, branched tubules and loops. The subtyping was derived by applying consensus clustering to a huge collection of more than 200 thousand mitochondrial images extracted from 1422 micrographs of Chinese hamster ovary (CHO) cells treated with different drugs, and was validated by evidence of functional similarity reported in the literature. Quantitative statistics of subtype compositions in cells is useful for correlating drug response and mitochondrial dynamics. Combining the quantitative results with our biochemical studies about the effects of squamocin on CHO cells reveals new roles of Caspases in the regulatory mechanisms of mitochondrial dynamics. This system is not only of value to the mitochondrial field, but also applicable to the investigation of other subcellular organelle morphology
    • …
    corecore