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Summary. This paper addresses the problem of layout and logical structure ex-
traction from image documents. Two classes of approaches are first studied and dis-
cussed in general terms: data-driven and model-driven. In the latter, some specific
approaches like rule-based or formal grammar are usually studied on very stereo-
typed documents providing honest results, while in the former artificial neural net-
works are often considered for small patterns with good results. Our understanding
of these techniques let us to believe that a hybrid model is a more appropriate so-
lution for structure extraction. Based on this standpoint, we proposed a Perceptive
Neural Network based approach using a static topology that possesses the charac-
teristics of a dynamic neural network. Thanks to its transparency, it allows a better
representation of the model elements and the relationships between the logical and
the physical components. Furthermore, it possesses perceptive cycles providing some
capacities in data refinement and correction. Tested on several kinds of documents,
the results are better than those of a static Multilayer Perceptron.

1 Introduction

Automatic structure extraction remains a very challenging problem due to
the inherent complexity of documents. For raster images of documents, the
gap between physical and logical structure is huge. It is difficult to model the
intermediate steps and the relationships between the original image blocks
and recognized layout structures, and to maintain consistency between the
processing steps in the recognition process. It is also difficult to handle image
noise, layout variations and artifacts produced during processing.

In spite of the numerous researches done in this way, the investigation
made in this area is prudent:

• recognition has been limited to few structures (less than 10, let say 5 in
average), essentially in editorial documents (i.e. books, articles, reports,
etc.), often accompanied by a DTD (Document Type Definition), making
the recognition more stereotyped;
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• recognition methodology has been limited to translating DTD knowledge
and its application on the document. The methods were mainly oriented
toward context-free grammars and tree or graph comparisons, and often
considered as limited in their ability to handle complex situations.

Certainly, the literature provides many approaches to structural recogni-
tion, but their application to document analysis is not straightforward and
their advantages often equal their drawbacks.

There are two main approaches to document layout analysis: those based
primarily on information manipulation, and those based primarily of perceiv-
ing features in data. Considering the information manipulation aspect, two
sub-categories exist:

• model-driven (e.g. systems using rules or grammars). They use and for-
malize knowledge well, and are precise and fast but are dependent on an
expert to guide their actions. Unfortunately, they do not generalize well,
and have been found sensitive to variation and noise;

• data-driven, starting from low-level data. Their classes should represent
very well the structure elements, but data description is not easy and the
convergence is not assured. However, contrary model-driven methods, they
remain very general and flexible as their adaptation to new documents is
easier.

Considering the perception aspect, here also two points of view can be
distinguished:

• global to local which is often assimilated to top-down approach. The pro-
cess is based on a segmentation refinement: here the progress seems to be
made continuously and safely but if an error is introduced in the beginning,
it remains during all the process.

• local to global or bottom-up approaches. These labeling-based methods
start from fine to coarse building progressively the context. In this case, a
lot of unused features have to be extracted and managed.

As indicated above, all the methods investigated in the literature present
some limitations. Hence, the solution that seems to be appropriate for doc-
ument structure analysis is a hybrid approach in the sense where it mixes
both aspects: data consistency and perceptual approaches for the processing
methodology.

This paper is organized as follows: section 2 discusses the use of Artificial
Neural Network (ANN) approaches in Document Analysis and Recognition
(DAR) area, specifically for recognition tasks involving the physical structure
of a document. Section 3 focuses on the ANN based solution for logical struc-
ture extraction. Finally, section 4 gives some perspectives about the use of
ANN in logical structure analysis.
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2 Neural networks in document analysis and recognition

2.1 Physical or geometrical layout analysis

In Document Analysis and Recognition (DAR), Artificial Neural Networks
(ANN) have been devoted mainly to preprocessing tasks or recognition of
small patterns as isolated characters. As detailed by Marinai et al. in [1],
such kind of use include binarization, noise reduction, skew detection, and
character thinning. The MultiLayer Perceptron (MLP) is used for example in
[2] to binarize images for character segmentation. After a segmentation phase
based on gray level histogram analysis, the authors feed a MLP with pixel
values within a 5×5 windows. In [3], a Self Organizing Map (SOM) and a
MLP are applied on the image to classify the pixels according to their gray
levels or color values. Another use of ANN is for noise elimination such as in
[4] by applying Kalman filtering.

For images representing characters, various ANN models dealing with
printed or handwritten scripts have been experimented. Main of them pro-
ceeds directly on the images as the inputs are often composed of the image
pixel values. Le Cun et al. [5] have provided a very interesting survey on vari-
ous ANN models related to handwritten words. Similar architectures (convo-
lutional) were used by [6] for handwritten digits recognition, complemented by
a SOM to correct the rejections. For each rejected character, a SOM is trained
and associated to the MLP to make possible the correction. Garris et al. [7]
used an enhanced MLP for the same problem, where the enhancements are
focused on neuron activation functions, regularization and Boltzmann prun-
ing.

Hence, these examples show clearly that ANN are able to deal with local
variations in a document image during recognition.

2.2 Logical structure analysis

There are few works on logical structure recognition using ANN. Indeed most
of the approaches are model-driven. The model contains the description of
the physical elements of the document and their associated logical labels. The
recognition procedure tries to identify these associations.

Usually, these models are either trees or grammar rules. In both cases, a
syntactical analysis procedure is employed to perform the structure labeling
[8]. For example, Brugger et al. [9] use a generalized n-gram (with n=3) to
represent geometrical relationship between the text blocks, then an optimiza-
tion method to match the current input with a global model or a sub-tree
of this model. Hu et al. [10] use dynamic parsing and fuzzy logic to be more
flexible when analyzing the logical structure. A rule-based system is employed
by Niyogi et al. [11] with a top-down backward-chaining strategy. Their sys-
tem “DeloS” handles about 160 rules in three levels for classification, reading
order and logical structure analysis.
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Although this methodology seems natural as it transcribes a known struc-
ture hierarchy of the document and works very well for simple documents,
its application on more complex document becomes difficult and causes many
errors. In fact, the use of deterministic models fails because of the rigidity
in the application of the rules. Furthermore, these kinds of models are often
created manually, leading the operator to select and tune himself a lot of pa-
rameters. This can explain the limits of such models when applied on real
images where the structure is complex and does not fit exactly the general
model. The inherent noise of the input image can sometimes introduce errors
in the interpretation of the elements.

To face this problem, a data-driven method seems more appropriate. ANN
can provide a good solution because they learn from examples, are robust,
insensitive to noise and have a generalization capacity. Furthermore, the ANN
based solution will avoid the drawbacks of model-based method provided that
knowledge must be integrated. Indeed as mentioned in [1], the classical use
of MLP is not sufficient to tackle the problem. Existing methods are focused
on the tuning of the MLP to resolve the problem and not really on new
architectures. The idea is to use a model which is not only based on MLP but
which can integrate the structural aspect of the problem.

Two types of ANN can be considered:

• static ANN (with MLP configurations) can adapt to structured patterns
by cleverly integrating the structure in the topology as made by [12];

• dynamic ANN by transforming the temporal chain in structured version
as in [13, 14].

These two architectures will be described in the following.

3 Neural networks for structured patterns

Neural networks are suitable to handle classification problems with static
information. For several applications including logical structure analysis, the
patterns to deal with are in a structured domain. ANN are designed to classify
unstructured patterns and cannot deal directly with tree or graph structures.
However, we can find models which can take into account the structured
patterns either in a dynamic or a static version.

3.1 Static networks

The best know type of static network is the MLP because it is the easiest
to implement, its training algorithm is well known and it has been applied
successfully to different kinds of data.

As mentioned in section 2, its use is generally devoted to physical element
recognition where there are no or few structures to interpret. All research
done on this kind of network does not focus on the model topology but more
on the way MLP is applied to the specific task.
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3.2 Dynamic networks

In order to take into account the temporal dimension of some real-world prob-
lems, a dynamic network can be applied rather than a static one.

The Time Delay NN (TDNN) is a straightforward solution that unfolds
the time sequence onto several static models through a Tapped Delay Line
(TDL) [15]. The same approach can be done with the RBFN (Radial Basis
Function Network) to take into account the temporal dimension [16].

Feedback dynamic methods as recurrent networks integrate feedback con-
trary to feed forward systems. The learning is recursive and consequently more
complex to undertake. The output Feedback based systems use the network
outputs in a second TDL besides the classical one’s as in TDNN [17].

State feedback methods feedback connections between neurons are intro-
duced: each neuron contributes to all components of the state vector.

Time Hopfield Networks (THN) [18] are mono-layer networks in which all
the possible interconnections are used. The Continuous THN (CTHN) is well
known as it can handle oscillations or even chaotic phenomenon. The Discrete
THN (DTHN) is similar to the previous one’s but here the activation function
is hard limiter and not a sigmoid.

Continuous Time Recurrent Neural Network (TRNN) [19] is quite sim-
ilar to CTHN: there is one layer of fully connected neurons, the difference is
in the differential equation managing the dynamic process. The same analogy
is done for the Discrete Time Recurrent Neural Networks (DTRNN) with its
hard-limiter function [20]. The DTRNN can simulate deterministic finite au-
tomate. In such ANN, the training stage is more complicated and two main
solutions can be seen in the literature. The first totally converts the network
into a feed forward version by unfolding the network over time. The second
method consists in the use recursive version of the gradient descent.

3.3 Dynamic networks for structured patterns

The previous dynamic networks have been developed to process sequences of
patterns but adaptations to structured patterns can be found in the literature.

Küchler and Goller [13] propose an approach to classify structured pat-
terns. The patterns considered are those represented by a Direct Acyclic
Graph (DAG) or by a Rooted LDAG (i.e. a graph with only one root node,
i.e. one node with in degree zero). The network topology, in a static view,
corresponds to the folding of the DAG in a feed forward MLP. The first layers
compute the folding part (i.e. inputs through DAG representation) and the
following layers constitute the transformation part (Fig. 1).
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� The Folding Architecture

The objective is to develop a neural architecture which can be utilized for sol�
ving a given ILS � ���P� where � � S � IRq � q � IN � jPj � p and S is a
given subset of the universe of RLDAGs� The principled idea is to combine a
component for encoding elements of S into suitable connectionist distributed
representations with a component to compute �approximation or classi�cation�
tasks on distributed representations�
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Fig� �� The generic folding architecture

��� The Static View

Our generic folding architecture is layered and the static view is that of a spe�
cially scaled multilayer feedforward network �Figure ��� The �rst r � � layers
fl�� � � � � lrg constitute the folding part� the next layers flr� � � � � lr�sg including
layer lr the transformation part� where s� r � �� All layers are fully�connected
with real�valued weights in a feedforward manner and each unit in the layers is
provided with a sigmoid transfer function�

The number q � IN of units �neurons� in the output layer lr�s is task�speci�c
as well as the maximum outdegree k which is de�ned by the domain S� The
number of hidden layers and the number of neurons in each layer concerning
the folding �fl�� � � � � lr��g� and transformation �flr��� � � � � lr�s��g� part is not
prede�ned by the given ILS� Neither is m� the dimension of the representation
layer lr � The input layer l� is constituted by n � k � m units� n holding the
representation for the vertex labels and k times m units provided for distributed
representations of DAGs� The weight matrix corresponding to the layer lj is
denoted by Wj with � � j � r� s� each unit is provided with an individual bias�

Fig. 1. Küchler et al. generic folding architecture

The input contains the vertex labels for distributed representation of DAG.
The last layer corresponds to the task specific output. The network dynamics
are defined as follows:

o
(l+1)
j (t) = f

(∑
i

o
(l)
i (t)w(l+1)

ij + θ
(l+1)
j

)
(1)

where o
(l)
i (t) is the output of neuron i in the layer l at recursion stage t,

θ
(l)
i is the bias associated with neuron i at layer l, w

(l+1)
ij the weight of the

connection between neuron i in layer l and neuron j in layer l + 1 and f the
sigmoid function.

The authors use a modified version of the Back-Propagation Through Time
(BPTT) algorithm where the structure of a labeled DAG is incorporated in
the error measurement

E =
p∑

i=1

q−1∑
j=0

1
2

(
[ti]j − o

(r+s)
j (root(si))

)2

(2)

where root denotes the function mapping structures to their root nodes, si

are in the general symbolic domain and ti define by Ξ(si) = ti with Ξ being
the function to be approximated.

Thanks to a special gradient descent technique called Back-Propagation
Through Structure (BPTS), the network can be trained. Experimentation has
been done on 2-classes classification problems on logical terms. The results are
very promising: 99% for the training and 98% for the test.

Sperduti et al. [14] propose another dynamic NN extended to structural
patterns. The main idea is to generalize a recurrent neuron in a “Generalized
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Recursive Neuron” (GNR). The approach is different from the standard one
which focuses on the tree-structure encoding in a fixed input vector. The GRN
considers the outputs of the unit for all the vertices which are pointed by the
current input vertex.
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Fig. 2. Neuron models for different input domains

Figure 2 shows the standard models for structured and unstructured of
patterns, on the right side, the presented configuration can represent any
graph or tree structure thanks to the proposed GRN. Usually, in a standard
neuron the output is given by:

o(s) = f

(∑
i

wiIi

)
(3)

where f is non-linear function such as the sigmoid, I the input vector and w
the weight vector. In the recurrent version, the output depends on time:

o(r)(t) = f

(∑
i

wiIi(t) + wso
(r)(t− 1)

)
(4)

where o(r)(t− 1) is the previous output at time t− 1 that is weighted by ws

and added to the activation formulae. In the GRN the output o(g)(x) depends
on a vertex in the graph and computed recursively on the output performed
for all the vertices pointed by it. The output is given by:

o(g)(x) = f

NL∑
i

wili +
out degreeX(x)∑

j=1

ŵjo
(g)(outX(x, j))

 (5)
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where x is a vertex of a graph X, NL the unit number encoding the label l
attached to the current input x, ŵj the weights on the recursive connections
and outX(x, j) the out nodes of the graph X attached to the node x. The
graph is encoded to fit with the GRN representation (Fig 3).
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Fig. 3. On the left side, the network encoding for an acyclic graph is shown. On
the right side, the encoding network for a cyclic graph is shown

The authors have extended five supervised algorithms for ANN to handle
the GRN: back propagation through structure, real-time recurrent learning,
LRAAM-based networks and simple recurrent networks, cascade-correlation
for structures, and neural trees.

For example the Back propagation Through Structure (BPTS) is simply
as in [13] an expression of the back propagation through time. The trick
consists in unfolding through time the recurrent network in an equivalent and
fully feed forward network. As a consequence, the transformed network can
be trained using the back propagation algorithm. For the GRN, the network
is decomposed into two parts: an encoding function Ψ and a classification
function Φ such as

o(X) = Φ(Ψ(X)) (6)

Using standard back propagation, the weights are modified using (7) and (8):

∆WΦ = −η
∂Error(Φ(y))

∂WΦ
(7)

∆WΨ = −η
∂Error(Ψ(y))

∂y
∂y

∂WΨ
(8)

Two cases must be treated separately in the case of a DAG and graphs
with cycles. With DAG, Küchler et al. [13] algorithm can be used. The training
is computed by back propagation of the error from the feed forward network
through the encoding network of each structure. For cyclic graphs, recurrent
back propagation must be considered.

Real-Time Recurrent Learning can also be extended. For DAG the exten-
sion does not present particular problems, the cyclic graphs are more difficult
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Fig. 4. The encoding part of the NN passes encoded structures to the classifier, the
classifier returns the deltas used by the encoder to adapt its weights

to extend and require different situation according to global cycle presence.
Thanks to the “Strongly Connected Component” and “Component Graph”
notion, the cyclic graphs can be considered as many acyclic graphs and solved
more easily.

Labeling Recursive Auto Associative Memory (LRAAM) [21], another
model to represent labeled structures, is trained by a combination of a super-
vised method and an unsupervised one. For structured pattern recognition,
Sperduti uses this LRAAM to produce a compressed representation of the
structure, then he uses an MLP to carry out the classification.

GRN can be also extended to the cascade-correlation algorithm developed
by Fahlmane and Lebiere [22]. This model generates a standard ANN by
using an incremental approach for classification of unstructured patterns. The
starting network N0 is a network with no hidden nodes trained using LMS.
If N0 cannot resolve the problem, a hidden unit u1 is added so that the
correlation between the output of the unit and the residual error of the network
N0 is maximized. The weights of u1 are frozen and the remaining weights are
retained. If the retained network N1 cannot solve the problem, the network is
further grown by new hidden units which are connected (with frozen weights)
with all the inputs and previous hidden units. The resulting network is a
cascade of nodes. Sperduti et al. extend the output of the kth to GRN using
(9) where w(v,j) is the weight of the kth hidden unit associated with the output
of the vth hidden unit computed on the jth component pointed by x. w̄

(k)
q is

the weight of the connection from qth hidden unit and the kth hidden unit.
Learning is performed as in standard cascade-correlation with the difference
that the equations are recurrent on the structures.
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o(k)(x) = f(α + β + γ)

α =
NL∑
i

w
(k)
i li

β =
k∑

v=1

out degreeX(x)∑
j=1

ŵ
(k)
(v,j)o

(v)(outX(x, j))

γ =
k−1∑
q=1

w̄(k)
q o(q)(x)

(9)

GRN can also be adapted to neural trees. The advantage of this kind of
model is to build the structure on the fly and not be restricted to a static
structure as in a feed forward network. New classes are learnt incrementally
with supervised or unsupervised training. The extension of this network to
a structured version is done by analogy: each discriminator associated with
each node of the tree is replaced by a generalized recursive discriminator.

Experiments on GRN have been carried out on several classification tasks.
The data are randomly generated. For small size structures (tree depth be-
tween 3 and 6) the results obtained on classification problems are nearly per-
fects for the training (near 100%) and very good for the testing (average of
95% and sometimes 100% with a good choice of hidden units and learning
parameters).

There is more and more work about dynamic networks, and although they
are not oriented directly towards logical structure extraction, it seems that
the previous contributions can be easily extended to this kind of application.
However, these recurrent techniques present some drawbacks compared to
static ANN:

• they are time and memory consuming;
• the convergence is more difficult to reach as there are more local minima;
• the convergence is slower, decreasing the training step make the training

more and more slow;
• there are more numerical errors that create serious repercussion on net-

work’s convergence;
• the gradient explosion occurs quickly on long sequences. The more the

sequence is long and the more the global error is large.

On top of that, the presented dynamic neuronal methods can deal with
logical structure recognition but are not sufficient. In addition to the inher-
ent limitations, the structures to be recognized need to be known and fixed
throughout the training and recognition. This it is not necessarily true in real
world applications.
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3.4 Transparent neural network for handwriting recognition

As seen in previous section, dynamic ANN can be extended to deal with
structured patterns. The well known static ANN such as MLP can be also
improved to handle structured patterns.

In [23], Côté et al. propose a perceptual model, Perceptro, for handwritten
word recognition. The proposed method is based on McClelland and Rumel-
hart’s reading mode [24]. Two questions are explored: what kinds of features
are detected and how the information concerning the meaning of a word is
accessed. The key is to integrate a knowledge representation in the network.
Indeed, trying to use a standard network with distributed representation, such
as the MLP, cannot deal correctly with handwritten recognition. That is why
in [23] a network with local representation is chosen for the kernel of their
approach. The Interactive Activation Model of [24] is a neural network with
local knowledge representation, parallel processing of information, and grad-
ual propagation of activation between adjacent levels of neurons. The original
activation is given by

Ai(t + δt) = Ai(t)− θi(Ai(t)− ri) + Ei(t)

Ei(t) =

{
ni(t)(M −Ai(t)) if ni(t) > 0
ni(t)(Ai(t)−m) if ni(t) < 0

ni(t) =
∑

j

(αij − βij)aj(t)

(10)

where θi is a decreasing constant, ri the activation threshold, Ei(t) the neigh-
borhood contribution, M and m superior and lower activation bounds, αij and
βij the positive and negative stimulation from j to i, and aj(t) the activation
of node j

Recognition is performed trough several bottom-up and top-down pro-
cesses. The physical features extracted from the image are specific to the
problem: primary (e.g. ascender, descender) secondary (e.g. loop, bar) and
face-up/face-down valley (e.g. connected components of the background be-
tween the lower and upper contours of the word). The architecture of the
system is general enough to handle hierarchical organized interpretation. The
authors have chosen three levels of neurons: feature, letter, and word (Fig. 5).

The connections between adjacent levels are excitatory and bi-directional.
The connections are only bottom-up between the feature letter and the letter
level. The weights are determined according to a priori knowledge. Thanks
to an active and passive neuron system, the network can reach the solution
after several cycles (until saturation) of bottom-up and top-down processes
called perceptual cycles. The system generates hypothesis, validates them and
may insert letter candidates in the right place using already validated letters
(Fig. 6).
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OUTPUT

INPUT

distributed code
day

night

Fig. 2. Network with distributed representation

In this type of network, a concept is distributed over
several neurons. A code is associated with each con-
cept. This code has no meaning in itself, and cannot
be directly explained as for local representation net-
works. This is why this type of network has been
compared to a “black box”.
From several examples, the network develops an in-
ternal representation: it learns configurations or
codes specific to each concept. The example in Fig. 2
shows the distributed version of the preceding ex-
ample. The network learns to answer ‘day’ when we
present ‘sun’ as input. It then represents the con-
cept ‘day’ with the following distributed code: black,
white, white, black.
At present, most of the networks used for pattern
recognition are distributed ones. However, this type
of network demands an intensive and time-consuming
learning phase. It also needs a large data base. More-
over, it is difficult to explain the behavior of these
networks step by step. In addition, it is very difficult
to analyze the origin of the recognizer errors and to
correct them to improve the system performance.
In the next section, we will show why we chose a local
knowledge representation for our system.

4 Psychological aspects

One of the trends in cursive script recognition is to get
inspiration from reading models (Higgins and Bramall
1996; Guillevic 1995; Côté et al. 1996a). We agree with
Wesolkowski when he says:

Humans are the best cursive word recognizers;
therefore, by studying our performance on this
task we might be able to set preliminary perfor-
mance goals for cursive script recognition systems.
(Wesolkowski 1996, p. 270)

It has been suggested that reading handwriting in con-
text requires no more features than the first letter and
the word shape (Higgins and Bramall 1996). Obviously,
the reading will be facilitated by the presence of addi-
tional information. Nevertheless, the underlying idea is
derived from studies of reading, in order to build efficient
automatic reading systems. Word recognition implies the
process of visual information, and its representation at
the linguistic level. Psychologists call lexical access the
processes by which humans associate the image of a word

WORK

W

Input

Feature

Letter

Word

O R K

A B A AB
B

BA

Fig. 3. Interactive Activation Model (McClelland and
Rumelhart 1981)

with its meaning. Most lexical access models take into
account the orthographic (the way the word is written)
and the phonological aspects (the way the word is pro-
nounced) of the word, because both of them are tightly
bound. Several models of lexical access have been de-
veloped, but up to now there is no final explanation on
this matter, and research is continuing (Taft 1991). The
question is, which reading model is best suited for the
task?

Jacobs and Grainger (Jacobs and Grainger 1994)
have published an overview of word reading models, com-
pared and evaluated according to their ability to repro-
duce the behaviors observed in humans. Three models
emerged from the others. The first and the second are
representatives of a traditional school, while the last is
an adaptation of “brain-style” simulation models.

– Verification Model (Paap et al. 1982)
In this model, the visual inputs trigger the activation
of some of the words in the lexicon. These activated
words constitute a set of candidates. At the verifi-
cation stage, this set of candidates is then sequen-
tially checked against the sensory representation of
the stimulus (as stored in visual memory), until a
match is made.

– Dual route (Coltheart and Rastle 1994)
This model assumes two main routes for lexical access
while reading: one for the words, and one for pseu-
dowords (pronounceable non-words such as ‘REET’
or ‘MAVE’).

– Interactive Activation Model (McClelland and
Rumelhart 1981)

Fig. 5. Côté et al. hierarchically organized ANN model

Experiments have been made on CENPARMI database (French and En-
glish handwritten cheques), using 184 pattern for training and 2929 for testing
achieve form 85.3% for word length 3 up to 100% with word length 9.

In [25], Maddouri et al. propose an extension of the Perceptro model [23].
They use a geometrical correction method to improve the performances of the
Arabic handwritten word recognition system developed. The recognition pro-
ceeds in cycles of global and local observations. The global observations try
to detect apparent features of the words. They create hypotheses on the word
label. To carry out the recognition from different kinds of information, a nor-
malization stage is done on the word edges to improve the local observations.
Indeed, contrary to printed words or characters, the handwritten text needs a
powerful normalization stage to handle the variability in position, size, rota-
tion, slant, and distortion. The authors have chosen a Fourier based solution
to eliminate this variability. The whole recognition process is summarized in
Figure 7.

The top-down and bottom-up cycles are carried out thanks to the TNN
model (right part of the schema), the local observation comes from the nor-
malization of features such as ascenders, descenders, diacritics, and loops (left
part of Fig. 7).
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Fig. 14. Top-down process. Feedback: arrows 1, 2 and 3.
Insertion: arrows 4, 5 and 6

best match the lexicon. In Fig. 14, the word-cells “only”,
“fifty”, and “fifteen” will stimulate the letter-cells which
have already contributed to their activation during the
bottom-up process (these are the letter-cells ‘b’, ‘d’, ‘f ’,
‘h’, ‘k’, ‘l’, and ‘t’ associated with zone 1).

The other process involved in the top-down process
is insertion. More precisely, we are talking about the
hypothesis generation, validation, and insertion process.
Again, we have simplified the diagram shown in Fig. 14,
which illustrates the insertion process. The idea is to use
contextual information given by the lexicon in order to
increase the chances of recognizing the word presented
to the system.

The activated word-cells generate letter hypotheses
which give some hints about the identity of the unknown
letters present in the image. These hypotheses are then
checked against the real image. If the features matching
the letter hypotheses are present in the unknown word
image, the hypotheses are validated and the correspond-
ing cells are activated; if not, they are rejected.

For example, in Fig. 14, the word-cell “only” proposes
the letter ‘n’, the word-cell “fifty” the letter ‘f ’, and the
word-cell “fifteen” the letter ‘i’. The hypotheses sought
are ‘n’, ‘f ’ and ‘i’ to the left of zone 1. In the image,
to the left of this zone, we can find a “face-down valley”
feature which validates the presence of letter ‘n’, but does
not accept letters ‘f ’ and ‘i’ as possibilities. A new zone,
zone 2 in this example, is thus created and inserted on
the left side of zone 1.

Following this example, we explain the above steps
in more detail:

– Generation: the system builds a topological repre-
sentation of the input word image based on informa-
tion such as: mean width of a zone, beginning and end

of a zone. It also takes into account the estimation of
the number of letters between the anchor zones based
on the mean width of a zone. Once this topology has
been established, the system computes the distance
between this target topology and each of the labelled
word in the lexicon. The words that are closer to this
target topology are retained as word candidates to
the hypotheses validation.

– Validation: for each word considered as a possibility,
we try to validate the retained hypotheses with the
input image. A letter in a word will be validated if its
features can be found in the image. When a letter is
validated, the score associated with the correspond-
ing word is increased. The words which have the high-
est scores will participate in the insertion process.

– Insertion: for each candidate word and for each val-
idated letter within this word, a zone is created and
inserted at the appropriate location in the image. In
each of these new zones, the feature-detectors corre-
sponding to the features found in this zone are acti-
vated. In the next cycle, these features will also con-
tribute to the propagation of activation among the
three different levels of the system.

In conclusion, at the end of the top-down process,
during feedback, the activation of letter-cells associated
with each zone of the image is reinforced. During inser-
tion, new zones are created and inserted.

5.5.3 Complete cycle and saturation. Because the acti-
vation increases gradually over time (cf., Sect. 5.6), the
cells of the system need several perceptual cycles before
they can reach an activation level high enough to decide
on the identity of the unknown word.

The sequence of zones at the end of a perceptual cy-
cle constitutes the input for the next cycle. Hence, at
the end of a perceptual cycle, hypotheses are validated
and the corresponding feature-cells are activated. These
newly activated features are added to those features ac-
tivated from the beginning. This is why, in Fig. 14, the
zone 2 created and inserted beside zone 1 will trigger the
activation of the feature-cell “face-down valley” in the re-
gion of the network associated with this zone. The input
for the next cycle will be zone 1 with its feature “as-
cender”, and zone 2 with its feature “face-down valley”.
The detection of these features initiates the activation
of the feature-cell “ascender” and the feature-cell “face-
down valley” in the regions of the network associated
with zones 1 and 2 respectively.

After several perceptual cycles, usually between 6
and 14 cycles, the activation of a word-cell reaches its
maximal value, meaning that the system has converged
toward a solution. When this happens, we say that the
system saturates (cf., Sect. 5.6). It is then possible to
establish a list of candidate words sorted in decreasing
order of activation. The words having the highest acti-
vation values among candidate words are selected as a
recognition result array.

Fig. 6. Top-down process: feedback and insertion

Kuhl introduced a transformation based on Fourier coefficients [5]. The idea was to 
describe the contour of a character by Fourier coefficients. Then, he applied 
geometric transformations to the Fourier coefficients in order to eliminate variability. 
This allows him to describe any image by invariant parameters. Recently, these 
transformation were used in [6] to normalize the contour of printed characters. In [7]  
and [8] a method for primitive extraction of long bones using a set of 2D Fourier 
descriptors is proposed. This set is shown to be stable, complete and endowed with 
geometrical invariancy properties. The invariant descriptors of the character are used 
for normalization and classification. It can also be used to reproduce a normalized 
image from the initial one. These different techniques try to normalize isolated 
characters (such as Asian characters, Latin characters and Arabic numbers). 
Normalization in this case can be independent from the context. In case of Arabic or 
Latin script, normalization tends to approach a new form to an already known 
reference, in order to reduce the handwritten variability  and achieve better 
recognition rates.  

The objective of our work is to create a relationship of similarity between a 
handwritten character taken from a word context and a reference set of characters 
proposed by a first step of a word recognition system. The normalization is specific to 
the handwritten character. It is considered as a step in the hole recognition system 
based on two complementary bottom-up and top-down process, see Fig. 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Local normalization and global recognition  
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Fig. 7. Local normalization and global recognition



14 Abdel Beläıd and Yves Rangoni

The normalization is performed on the boundary of the word: a detection
of the contour is done first, then a Freeman chain code is generated, the
next step consists in computation of Fourier coefficient of the chain-encoded
contour and finally, the coefficients are normalized to cope with variability.
To obtain the final normalized character, a reverse Fourier transformation is
applied to the latest normalized coefficient. The reader can refer to [25] to see
how the boundary normalization is carried out. When the word is normalized,
a metric distance is used to evaluate the difference between the current word
and printed references.

3.5 Perceptive structured neural network for logical structure
analysis

In [12], Rangoni et al. propose a quite similar TNN for logical structure recog-
nition in document images. The hierarchically organized interpretation is kept
and transposed to handle editorial documents. Each neuron corresponds to an
interpretable concept and is attached to an element of the logical structure.
Excluding the first layer composed of input physical features, the following
layers unfold the interpretation by introducing fine concepts in the first layers
and general concepts in the latest layers (Fig. 8).

118 Y. Rangoni and A. Beläıd

In order to take into account theses two aspects (knowledge and learning), we
propose a new ANN approach that use a Transparent Neural Network (TNN)
architecture. This method has the same MLP capacities and can act, in the same
time, on the reasoning by introducing knowledge. The recognition task is done
progressively by propagation of the inputs (local vision) towards the outputs
(global vision). Back-propagation movements, during recognition step, are used
for an input correction process as the human perception acts. These successive
“perceptive cycles” (vision-interpretation) bring a context return which is very
helpful for the input improvement.

This paper is organized as follows. In the first section, the TNN architecture
is described. The second section details an input feature clustering method to
speed up the perceptive cycles. Finally, in the last section experimental results
and discussions are reported.

2 The TNN Architecture Description

The proposed TNN architecture is described in Fig. 1. The first layer receives
physical features where each element corresponds to a neuron. The following
layers represent the logical structure at three different levels, from fine to coarse
(see Fig.8 for the whole input and output names).

All the layers are fully connected and all the neurons carry interpretable
concepts. This modeling integrates common knowledge on “general” document
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Fig. 1. Neuron semantic for document analysis
Fig. 8. Topology for scientific articles

If a DTD is present, it can be helpful to set the neurons meaning: the
hierarchy included in the DTD can be unfolded to form the layers and the
neurons. Contrary to other models [23, 25] the network is fully connected and
the neurons can be inhibitors.
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Training and recognition

As the relations between the layers are not straightforward, a training phase
similar to MLP is proceeded to set all the weights.

In the back propagation algorithm, the error Ep(w) between the desired
output dq and the computed output oL,q is minimized for each pattern p

Ep(w) =
1
2

NL∑
q=1

(oL,q(xp)− dq(xp))2

ol,j = f

Nl−1∑
i=0

wl,j,iol−1,i

 (11)

As a consequence, the weight between the unit i in layer l and unit j in layer
l + 1 is modified as follows

wl,i,j → wl,i,j − µ

P∑
p=1

∂Ep(w)
∂ol,j

f ′

Nl−1∑
m=0

wl,j,mol−1,m

 ol−1,i (12)

In case of [12], all the neurons carry interpretable concepts and the desired
output is known for all the units. So, the partial term is given by:

∀l, ∂Ep(w)
∂ol,j

= ol,j(xp)− dj(xp) (13)

and the network can be trained as a cascade of mono-layer perceptrons.
The model is on the one hand data-driven thanks to the training stage and

on the other hand model-driven due to the integration of knowledge inside
the topology. This kind of ANN is called Transparent Neural Network (TNN)
in contrast to the “blackbox” aspect of MLP. For document logical layout
analysis, we have named this the Perceptive Structured NN (PSNN).

The aim of the final layers is to bring context during the perceptive cycles
as the previous authors used these to simulate the “word superiority effect” on
letters. As the network is feed forward, the learning of the network is the same
as an MLP but here the training is done separately between each consecutive
pair of layers because all the desired outputs are known.

During the recognition step, the network is used as an MLP but after each
propagation, the outputs are analyzed. If the output vector is close to a basis
vector (14 &15) the pattern is considered classified, otherwise the following
layers are taking into account to bring context. M(O) gives a vector with at
least one component with high value, Γ (O) give a vector where one component
has a value very high compared to other components.

M(O) = ‖O‖∞ > ε with 0 � ε < 1 (14)
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Γ (O) =
n((
∑

Oi)2 −
∑

O2
i )

(n− 1)(
∑

Oi)2
< η with 0 < η � 1 (15)

As these layers contain more global information, they are more robust and
accurate. They are used to generate hypothesis on the pattern. The context
manages the correction of the input features. Once a label is supposed to be
the good one, the input vector is modified according to this hypothesis and
according to the knowledge extracted from the training database. Indeed, sev-
eral representative samples are extracted from database and are matched with
the current input. The input is modified to be close to a representative sam-
ple and another perceptive cycle is completed and so on until no ambiguities
persist (Fig. 9).
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Fig. 3. Perceptive cycles: propagation, analysis, context return, and correction

– the first decision concerns the output when it is close to a unit vector. Thus,
the system gives a ruling on a “good” pattern. This means that a class has a
sufficient score ‖O‖∞ � ε with 0 � ε < 1 (acceptable class) and this winning
class has a score greater than the others Γ (O) = n((

�
Oi)2−

�
O2

i )
(n−1)(

�
Oi)2

� η with
0 < η � 1 (superior class). If such an output satisfies these rules, the system
stops and the pattern is classified.

– the alternative decision occurs when the system reports an ambiguity (i.e.
the pattern is confused among several classes). In that case, the latest TNN
layers react and propose a context. Thanks to the known neuron semantic,
information from upper layers are used to determine the possible or unlikely
classes. A hypothesis is created about the possible pattern class and then
the input is analyzed in order to find the wrong component values.

As the input physical features (e.g. bounding box, font style, text, etc.) are
determined by specific algorithms, it is possible to operate on their precision (or
quality) by reconsidering the algorithm parameters, or by changing totally the
algorithm method. An example of “re-tuning” can be the OCR settings that give
the text. It is possible in an OCR engine to change the amount of computation
but changing consequently the recognition quality. The “High Speed” mode is
chosen when it is needed to separate text and image whereas “High Quality”
mode is preferred if a precise word (a key-word for example) is searched in the
text block.

Another example of algorithm “swapping” is the evaluation of word number
in a text block. Two solutions can be chosen. The first solution uses RLSA and

Fig. 9. Recognition in Perceptive Structured Neural Network

There are several methods to determine these representative samples; un-
fortunately there is no exact solution. Some approaches have been investi-
gated. Methods using optimization produce mathematically perfect sample
but they do not correspond to real-world interpretable solutions. Methods
that are more straightforward can produce appropriate samples: mean sample
for only one representative or a k-NN for select several samples per class. Oth-
ers methods can be performed during the training stage: In [26], a new learning
method is presented which can produce from a very small subset of the global
database an MLP almost as efficient as trained on the whole database. The
subset arisen from the algorithm will provide the representative samples.
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Input feature clusterization

The perceptive cycles in this PSNN allow bottom-up and top-down resolution
and refine the recognition. However, if too many recognition cycles have to
be done, the task could be very time consuming because a lot of physical ex-
traction must be completed. On top of that, some of the inputs are high-level
(given by OCR) and slow down the logical structure recognition. In order to
face this problem, a manual selection has been used to trim down the extrac-
tions. To simulate global and local vision, the input features are partitioned
into clusters using a data categorization. Instead of feeding the network with
the whole features for each cycle, the features are given progressively during
the recognition and only if the pattern is too ambiguous (Fig. 10).
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Fig. 10. Perceptive cycles: propagation, analyze, context return, correction, input
feature selection

Subsets of feature are computed according to their extraction time and
their predictive capacities. The first criterion is trivial as the extraction can
be timed by experiments or by analyzing the algorithm complexity. Evaluat-
ing the predictive power of a set of features is more complicated as there is
no optimal solution to do this. The literature proposes two main approaches:
filter-based methods and wrapper methods [27]. The filter methods only use
the sample database to score the feature, they are fast to evaluate the fea-
ture separately but do not produce good groups. On the other side, wrapper
methods consider variables but they need the classifier to produce the groups.
The method presented in [12] is based on a filter approach but can compute
groups at the same time with ordered predictive power and less redundancy
inside each group (Fig. 11).
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Ni is used to classify Vi in k classes. The k neurons Ni rep-
resent the centre of each class of Vi. For each Ni, the nearest
Vi and its associated variable xi are looked for. The xi is put
in one of the k variables groups. A new Vi close to the cen-
tres is once again searched. The 2nd then the 3rd group of
variables is progressively filled until a nth (Fig.4). There are
thus n ≈ card(V )

k groups having each complementary vari-
ables and the groups are sorted by descending order of pre-
dominance of their variables.
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Figure 4. Data categorization according to
predictive capacity.

Once these groups are formed, they can directly be used
to form the groups used during the perceptive cycles. In-
deed, the most informative variables are generally the most
difficult to extract. As another solution, we can consider, as
in our case, that the extraction time of each feature is not
constant. Then it is possible either to arrange the groups ac-
cording to the total computation time of each one, or to re-
make other variable groups according to extraction time and
by regarding, in a second time, the variable membership to
an old group as an indicator of predictive capacity.

5. Experimental results

We tested the method on two different data sets. The first
uses MNIST database to have “continuous” data (images of
digits), and a MLP (Multi Layer Perceptron) was used as
classifier. Image pixels are taken as input vector. We evalu-
ate our groups with those obtained by choosing the best re-
sult of a thousand random subsets. It is difficult to assess
the effectiveness of the method compared to the optimum
solution (as there is no method available). It would be nec-
essary to make an exhaustive search (exponential complex-
ity), which would require testing for example C10

49 > 8 ·109

subsets to choose a subset of 10 elements among 49.
We can see in Table 1 that this filter approach manages

to keep more than half of the information by keeping less

Method
# features Random Our selection

49(max) 100% 100%
35 94.2% 99.3%
25 81.2% 88.6%
15 56.2% 70.5%
10 43.9% 55.2%

Table 1. Digits classification accuracy while
decreasing the number of features

than the quarter of features. The results are good in spite of
the strong influence of each pixel on the classifier.

For the tests concerning the logical document structure
retrieval, we chose as principal database the Siggraph 2003
conference [15]. The documents are scientific articles hav-
ing numerous and diversified logical structure elements.
Thus, we can carry out interesting tests. We find in these
74 documents 21 structures (Title, Author, Email, Local-
ity, Abstract, Key words, CR Categories, Introduction, Para-
graph, Section, SubSection, SubSubSection, List, Enumer-
ation, Float, Conclusion, Bibliography, Algorithms, Copy-
right, Page number and Acknowledgments) and this repre-
sents more than 2000 objects.

We tested the same method on this database of numeri-
cal documents. We extracted physical information from the
document layout (size of the bounding box, font, number
of words, etc.) There are 56 features holding geometrical,
typographical, and morphological information and we use
once again a MLP classifier.

Method
# features Random Our selection

56(max) 100% 100%
35 86.9% 99.3%
25 65.0% 79.6%
15 51.8% 80.1%
10 35.1% 83.8%
5 17.9% 44.9%

Table 2. Logical elements classification accu-
racy while decreasing the number of features

We can observe, through the results in Table 2, that this
type of data better lends itself to this feature classification
as we were expecting. We notice that the method is prof-
itable when the number of features is rather small (we do
not force it to choose useless variables) and can be very
powerful in this case (we keep more than 83% of informa-

Fig. 11. Input feature clustering

By combining the input feature correction and selection, the PSNN is able
to adapt the computation amount according to pattern complexity without
adding too much processing time.

Experimentations

The system has been tested on scientific articles (Fig. 13). Physical inputs are
mainly extracted by commercial OCR, others are computed by using existing
ones. There are also 21 logical lables that cover any document image (Fig. 12).

After four perceptive cycles, the recognition rate increase to 91.7% which
is 10 points better than a classical MLP (Tab. 1).
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Fig. 8: Logical outputs and physical inputs for documents.

The choice of the space dimension influences the results quality. Even if the
MLP is a classifier able to give good results with few features, choosing too low
or too high eigenvector dimension can be bad for the input feature clustering
and consequently for the classifier.

It seems here (and for other tests that have be done on MNIST) that the
Cattell method (that set q = 19) is most of the time better than Kaiser (with
q = 14). The two methods, which automatically find the number q, give the same
or better results than the classical ones where the user must fix this number. We
will retain for the following tests the Cattell method that seems to be the most
robust on many experimentations.

As expected and confirmed in Table 4, these “high-level” features lends well
to this selection.

In this case, the choice of a small set of features is more difficult. The feature
clustering method seems to be appropriate when the number of features is rather
small and can be very powerful in this case (more than 83% of information is
kept by dividing the variable number by 5).

Leaving side input features selection, results about complete DIA system are
presented. Three input features subsets are created with the previous method.
Extraction tools, which can be configured, are used to extract the physical layout.
During the recognition phase, the system can choose between the feature subsets
and act on extraction tools as mentioned in Section 3. The training stage uses
44 documents and 30 for the test. Test results between a MLP and the TNN at
the end of four perceptive cycles are presented in Fig.5.

The perceptive cycles increase the recognition rates. After 4 cycles, the clas-
sifier reaches 91.7%. A TNN without perceptive cycles is worse than a MLP

Fig. 12. Input feature clustering

Classes
PSNN

MLP C1 C2 C3 C4

Whole 81.6% 45.2 78.9 90.2 91.7%

Best 86.9% 66.7 85.3 85.3 99.3%

Worst 0.0% 0.0 0.0 4.0 28.6%

Time 1 0.7 1.45 1.85 2.40

Table 1. Logical structure classification for MLP and for PSNN
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Fig. 13. Document sample
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4 Conclusion and perspectives

We outlined in this paper several categories of approaches used for the extrac-
tion of document structures from raster images. After a description of their
properties, advantages and drawbacks, we focused on neural approaches for
their capacities in noise absorption and generalization capacities. Their ap-
plication in document analysis was a real challenge for us as they were not
considered for this kind of structured data. The idea of McClelland to propose
a perceptive model with different cycles allowing a dynamic and progressive
approximation of the problem was the basis of our investigations. After the
study of others dynamic models, we proposed a specific one called Perceptive
Structured Neural Network which can be applied for logical structure recog-
nition. This model allows us to process several categories of structures based
only on physical data. After few cycles, the behavior of the system is better
than an MLP’s. Besides, it gives us the possibility to refine the outputs by
correcting the inputs accordingly.

Although dynamic ANN are able to deal with structured patterns, they
are not still used for document logical layout analysis. Besides, static networks
have been used far less than pure model-driven approaches. All the works pre-
sented in the section 3 show how to extend classical models to deal with such
a problem. The neuronal approach is accessible and can be as competitive as
grammar or rule based systems. It is obvious that, as mentioned in Nagy et al.
[28], domain specific knowledge appears essential for document interpretation.

The proposed PSNN can be improved in a different way: the data-driven
methods may be improved by introducing hidden layers between each layer
of interpretable concepts. The “transparency” property will be lost but the
system will be more accurate and have better generalization capacities.

Another approach could integrate transparency in a dynamic network or
adding dynamic properties to PSNN. A simply output feedback-based PSNN
will have more feedback information when using the context. On top of that,
the context will be taking into account not only during the recognition but
also during the training stage.
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