556 research outputs found

    Interpreting linear support vector machine models with heat map molecule coloring

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity.</p> <p>Results</p> <p>We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor.</p> <p>Conclusions</p> <p>In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor.</p

    Paving the path for implementation of clinical genomic sequencing globally - Are we ready?

    Get PDF
    Despite the emerging evidence in recent years, successful implementation of clinical genomic sequencing (CGS) remains limited and is challenged by a range of barriers. These include a lack of standardized practices, limited economic assessments for specific indications, limited meaningful patient engagement in health policy decision-making, and the associated costs and resource demand for implementation. Although CGS is gradually becoming more available and accessible worldwide, large variations and disparities remain, and reflections on the lessons learned for successful implementation are sparse. In this commentary, members of the Global Economics and Evaluation of Clinical Genomics Sequencing Working Group (GEECS) describe the global landscape of CGS in the context of health economics and policy and propose evidence-based solutions to address existing and future barriers to CGS implementation. The topics discussed are reflected as two overarching themes: (1) system readiness for CGS and (2) evidence, assessments, and approval processes. These themes highlight the need for health economics, public health, and infrastructure and operational considerations; a robust patient- and family-centered evidence base on CGS outcomes; and a comprehensive, collaborative, interdisciplinary approach

    Latin American immigrants in Indianapolis: Perceptions of prejudice and discrimination

    Get PDF
    The article focuses on immigrants’ interactions with the Indiana natives, with emphasis in the city of Indianapolis and its suburbs. More specifically, this study aims at providing an understanding of the experiences of Latin American immigrants with special attention to perceptions of prejudice and discrimination and to feelings of social exclusion. A substantial proportion of Latin American immigrants interviewed indicated that they considered Indiana natives to be prejudiced and that they had personally experienced discrimination. The study reveals specific examples of discrimination experienced by the immigrants at the work place, in housing, in stores, restaurants and by various service providers. The results of the study demonstrate the relevance of the normative and power resource theories to explain prejudice and discrimination

    Online dispute resolution: an artificial intelligence perspective

    Get PDF
    Litigation in court is still the main dispute resolution mode. However, given the amount and characteristics of the new disputes, mostly arising out of electronic contracting, courts are becoming slower and outdated. Online Dispute Resolution (ODR) recently emerged as a set of tools and techniques, supported by technology, aimed at facilitating conflict resolution. In this paper we present a critical evaluation on the use of Artificial Intelligence (AI) based techniques in ODR. In order to fulfill this goal, we analyze a set of commercial providers (in this case twenty four) and some research projects (in this circumstance six). Supported by the results so far achieved, a new approach to deal with the problem of ODR is proposed, in which we take on some of the problems identified in the current state of the art in linking ODR and AI.The work described in this paper is included in TIARAC - Telematics and Artificial Intelligence in Alternative Conflict Resolution Project (PTDC/JUR/71354/2006), which is a research project supported by FCT (Science & Technology Foundation), Portugal. The work of Davide Carneiro is also supported by a doctoral grant by FCT (SFRH/BD/64890/2009).Acknowledgments. The work described in this paper is included in TIARAC - Telematics and Artificial Intelligence in Alternative Conflict Resolution Project (PTDC/JUR/71354/2006), which is a research project supported by FCT (Science & Technology Foundation), Portugal. The work of Davide Carneiro is also supported by a doctoral grant by FCT (SFRH/BD/64890/2009)

    The impact of patient self assessment of deformity on HRQL in adults with scoliosis

    Get PDF
    Background: Body image and HRQL are significant issues for patients with scoliosis due to cosmetic deformity, physical and psychological symptoms, and treatment factors. A selective review of scoliosis literature revealed that self report measures of body image and HRQL share unreliable correlations with radiographic measures and clinician recommendations for surgery. However, current body image and HRQL measures do not indicate which aspects of scoliosis deformity are the most distressing for patients. The WRVAS is an instrument designed to evaluate patient self assessment of deformity, and may show some promise in identifying aspects of deformity most troubling to patients. Previous research on adolescents with scoliosis supports the use of the WRVAS as a clinical tool, as the instrument shares strong correlations with radiographic measures and quality of life instruments. There has been limited use of this instrument on adult populations. Methods: The WRVAS and the SF-36v2, a HRQL measure, were administered to 71 adults with scoliosis, along with a form to report age and gender. Preliminary validation analyses were performed on the WRVAS (floor and ceiling effects, internal consistency and collinearity, correlations with the SF-36v2, and multiple regression with the WRVAS total score as the predictor, and SF-36v2 scores as outcomes). Results: The psychometric properties of the WRVAS were acceptable. Older participants perceived their deformities as more severe than younger participants. More severe deformities were associated with lower scores on the Physical Component Summary Score of the SF-36v2. Total WRVAS score also predicted Physical Component Summary scores. Conclusion: The results of the current study indicate that the WRVAS is a reliable tool to use with adult patients, and that patient self assessment of deformity shared a relationship with physical rather than psychological aspects of HRQL. The current and previous studies concur that revision of the WRVAS is necessary to more accurately represent the diversity of scoliosis deformities. Ability to identify disturbing aspects of deformity could potentially be improved by evaluating each WRVAS items against indicators of pain, physical/psychosocial function, and self image from previous measures such as the SRS, SF-36 or BSSQ-deformity

    Processing of inconsistent emotional information: an fMRI study

    Get PDF
    Previous studies investigating the anterior cingulate cortex (ACC) have relied on a number of tasks which involved cognitive control and attentional demands. In this fMRI study, we tested the model that ACC functions as an attentional network in the processing of language. We employed a paradigm that requires the processing of concurrent linguistic information predicting that the cognitive costs imposed by competing trials would engender the activation of ACC. Subjects were confronted with sentences where the semantic content conflicted with the prosodic intonation (CONF condition) randomly interspaced with sentences which conveyed coherent discourse components (NOCONF condition). We observed the activation of the rostral ACC and the middle frontal gyrus when the NOCONF condition was subtracted from the CONF condition. Our findings provide evidence for the involvement of the rostral ACC in the processing of complex competing linguistic stimuli, supporting theories that claim its relevance as a part of the cortical attentional circuit. The processing of emotional prosody involved a bilateral network encompassing the superior and medial temporal cortices. This evidence confirms previous research investigating the neuronal network that supports the processing of emotional information

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan ÎČ < 40

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Zâ€Č gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/Îł bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the ÎŒ + ÎŒ −channel. A Z â€Č boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Zâ€Č Models
    • 

    corecore