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Abstract 6 

Despite the emerging evidence in recent years, successful 7 

implementation of clinical genomic sequencing (CGS) remains 8 

limited and is challenged by a range of barriers. These include 9 

a lack of standardized practices, limited economic assessments 10 

for specific indications, limited meaningful patient engagement 11 

in health policy decision-making, and the associated costs and 12 

resource demand for implementation. Although CGS is gradually 13 

becoming more available and accessible worldwide, large 14 

variations and disparities remain, and reflections on the 15 

lessons learned for successful implementation are sparse. In 16 

this commentary, members of the Global Economics and Evaluation 17 

of Clinical Genomics Sequencing Working Group (GEECS) describe 18 

the global landscape of CGS in the context of health economics 19 

and policy and propose evidence-based solutions to address 20 

existing and future barriers to CGS implementation. The topics 21 

discussed are reflected as two overarching themes: (1) system 22 
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readiness for CGS and (2) evidence, assessments, and approval 1 

processes. These themes highlight the need for health economics, 2 

public health, and infrastructure and operational 3 

considerations; a robust patient- and family-centered evidence 4 

base on CGS outcomes; and a comprehensive, collaborative, 5 

interdisciplinary approach. 6 

Keywords: clinical genomic sequencing; health economics; 7 

precision medicine; global 8 

health; genomic medicine; genetic testing 9 

 10 

Background 11 

Clinical genome sequencing (CGS) has significantly changed 12 

genomic medicine and garnered global interest, owing to its 13 

ability to process large amounts of genomic data rapidly and 14 

simultaneously.1,2 As a diagnostic tool in oncology, immunology, 15 

and rare diseases, CGS could enhance clinical care by offering 16 

earlier detection and reduced diagnostic odysseys, tailored 17 

treatment options, and definitive and accurate genomic 18 

etiologies and prognoses.3–8 However, efforts to evaluate and 19 

improve implementation and access to CGS are complicated by the 20 

variability of health systems and funding capacities across 21 

countries.9,10 22 
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This commentary is an international, collaborative contribution 1 

to illustrate the global landscape of CGS in clinical 2 

applications and propose economic- and policy-focused solutions 3 

where appropriate. The authors are members of the Global 4 

Economics and Evaluation of Clinical Genomics Sequencing Working 5 

Group (GEECS), which aims to improve methodologies in assessing 6 

the value of CGS to facilitate its cost-effective and equitable 7 

implementation.11 The topics covered in this commentary reflect 8 

two themes: (1) system readiness for CGS and (2) evidence, 9 

assessments, and approval processes. We discuss several key 10 

challenges and potential solutions for addressing the slow and 11 

limited uptake of CGS globally that reflect these two themes. 12 

These challenges and solutions include the lack of harmonization 13 

and standardization around genomic data, evidentiary uncertainty 14 

about CGS which requires centralized practices and policies with 15 

collaboration amongst government bodies, laboratories, health 16 

and academic institutions, and patients to create robust 17 

evidence bases and to increase patient engagement. We also 18 

consider equity and both financial constraints and incentives to 19 

support implementation of CGS and ongoing sustainability. 20 

Although some of these topics are applicable to certain 21 

countries and types of health systems, particularly in the 22 

context of economic evaluation, the general considerations 23 
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regarding challenges and solutions for implementing CGS are 1 

relevant in the broad context of health policy. 2 

  3 

System Readiness for CGS 4 

Increasing trust in CGS through review, standardization, and 5 

transparency  6 

It is a challenge for health systems to ensure that novel 7 

medical technologies, including CGS, are safe, effective, 8 

economically viable, and trusted by patients. In the US, 9 

concerns have emerged due to conflicting information about the 10 

limitations of genomic tests in screening for rare diseases, 11 

such as a New York Times report on the frequency and 12 

consequences of false-positive findings from non-invasive 13 

prenatal genetic tests.12 These reports contributed to calls for 14 

greater review, standardization, and transparency of genomic 15 

testing through regulation.  16 

Transparency of CGS could be furthered through publicly 17 

accessible genetic and laboratory test registries and regulatory 18 

and delivery system infrastructures.13,14 For example, the 19 

National Institutes of Health Genetic Testing Registry (GTR) was 20 

developed to document and standardize data on registered 21 

laboratories and genetic tests.14 Although regulatory oversight 22 
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of tests and laboratories typically falls under the jurisdiction 1 

of government agencies and professional bodies, registries such 2 

as the GTR could reveal gaps and issues in the registered tests 3 

that may prompt further inquiry and action.   4 

However, increasing review and standardization of CGS can be 5 

complicated. Although the US Food and Drug Administration (FDA) 6 

regulates clinical tests, most genomic tests are laboratory-7 

developed tests (LDTs) that often enter the market without 8 

regulatory review.15 On September 29, 2023, the FDA announced its 9 

intent to provide greater oversight of LDTs through the rule-10 

making process, with an expected final issuance in 2024.15 Their 11 

rationale specifically notes that greater oversight is needed 12 

because of patient and provider mistrust about test safety and 13 

effectiveness. 14 

The implications of the FDA proposal are complex and spark 15 

debate on balancing innovation and accessibility with trust in 16 

tests’ safety and efficacy. Numerous responses to the proposed 17 

rules have emerged, with proponents and opponents arguing their 18 

perspectives.16 These debates – and the implications if the rule 19 

is approved – are particularly relevant to CGS that are 20 

classified as LDTs. Regardless of the mechanisms used and 21 

actions taken, acceptance and trust by patients are critical 22 

aspects of CGS adoption. 23 
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 1 

Considerations of Equity in CGS Access and Outcomes  2 

Health inequity is embedded in genomic medicine. The exclusion 3 

of minoritized populations from genomics research has resulted 4 

in disparities in genomic data across ancestral groups and 5 

subsequent repercussions in clinical care, such as higher rates 6 

of inconclusive genetic results in patients from ancestral 7 

groups outside of Europe.17,18 Compounding data disparities, 8 

individuals belonging to underserved populations, including 9 

racial and ethnic minority groups, socioeconomically vulnerable 10 

groups, and rural populations, face limited access to CGS.19–22 11 

When patients in underserved population groups do receive 12 

testing, disparities in outcome-based diagnostic value and 13 

accessibility to follow-up care further perpetuate cycles of 14 

health inequity.21 If not addressed, these challenges and the 15 

greater medical distrust in these populations23,24 could impede 16 

the successful implementation of CGS.  17 

Policymakers and other relevant parties must consider the impact 18 

on health equity when developing policies to implement and 19 

support CGS. Health economists can advance understanding of 20 

empirical impacts on equity by using equity-informative 21 

approaches to economic evaluation of CGS interventions. One type 22 

of equity-informative analysis is the distributional cost-23 
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effectiveness analysis (DCEA). DCEA models the distribution of 1 

health benefits and opportunity costs across population 2 

subgroups and thus allows formal assessment of tradeoffs between 3 

efficiency and equity.25,26 DCEA can inform health policy and 4 

implementation decisions, and by projecting the expected impact 5 

of CGS on total health and health equity, it can be used to 6 

monitor these outcomes as genomics research progresses. Future 7 

research is warranted to address the data and methodological 8 

challenges of using DCEA to evaluate CGS, and the acceptability 9 

and usefulness of DCEA output to policymakers. Results of DCEA 10 

should be considered alongside other social science research on 11 

attitudes and preferences for CGS among diverse and 12 

representative populations. 13 

 14 

Centralized, regional sequencing and institutional-level 15 

informatics and results disclosure 16 

Creating a diagnostic sequencing service requires significant 17 

investment in equipment and supplies, retooling of laboratories, 18 

staff training, and maintaining updated bioinformatics 19 

pipelines. Variations in services across institutions and 20 

laboratory partners, based on the patient’s region of residence 21 

and insurance coverage, contribute to inconsistency and 22 

inefficiency.  23 
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Establishing a single high-volume sequencing laboratory within a 1 

region or payer jurisdiction with cloud-based data storage can 2 

reduce procurement, supply, and contract costs, and enhance 3 

standardized procedures for staff training and pipeline 4 

maintenance and updating.27–29 An online regional accessioning 5 

system can be created where physicians can request sequencing 6 

for their eligible patients, allowing them to have blood drawn 7 

and shipped locally.30  Raw results can be returned to 8 

bioinformaticians working locally with a requesting medical 9 

geneticist or specialist for clinical interpretation and 10 

reporting.31 Alternatively, interpretation and reporting may be 11 

performed at a few academic health centers, and results returned 12 

to the ordering physician. Local solutions may be limited in 13 

terms of yielding economies of scale (e.g., smaller sample 14 

throughput) and may potentially be more expensive compared to a 15 

centralized system. Decisions in managing sequencing informatics 16 

would need to be considered in the context of the specific 17 

health system. 18 

 19 

Understanding features for system implementation and financial 20 

incentives to drive uptake in practice  21 

 22 
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System readiness for CGS in practice requires an understanding 1 

of operational and logistical considerations, including the 2 

technical platform, sample collection and preparation, and the 3 

testing site and methodologies. The future use of CGS in health 4 

systems requires (1) infrastructure for a community of practice 5 

involving health professionals in various specialties; (2) 6 

operational resources for innovation, coordination, and 7 

evaluation of testing and reporting services; and, (3) a 8 

healthcare environment integrating innovation and healthcare 9 

delivery with educational and training support.32–36 The 10 

implications of these health system factors for CGS extend 11 

beyond individuals to collective societal values and needs.35,37 12 

Evidence of differential use of genetic tests amongst primary 13 

care physicians reveals lower rates of referral and testing for 14 

specific patient populations in the United States.35 These 15 

findings reflect the potential for inequitable access and uptake 16 

of CGS amongst different populations and care systems that 17 

result in differential utilization of CGS. Consequently, 18 

inadequate consideration of the impacts of health system factors 19 

could affect the accessibility of CGS for specific population 20 

groups differentially. Engaging public health experts and health 21 

economists can support healthcare decision-making and develop 22 

systems for innovation and broader, more equitable use of CGS in 23 

care and preventive applications.32 24 
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Recognizing the financial structures of health systems and 1 

coverage policies is also necessary, as they incentivize 2 

hospital institutions to consider and negotiate price-volume 3 

arrangements to maintain revenues. The Medicare Benefits 4 

Schedule in Australia dictates a 75% rebate for fluorescence in-5 

situ hybridization testing for EGFR-negative, non-small lung 6 

cancer patients.38 This test can be performed and claimed 7 

multiple times, which might encourage higher claims than actual 8 

testing costs. This fee structure, therefore, does not optimize 9 

clinical practice and necessitates routine review and 10 

adjustments. Conversely, the Netherlands introduced a payment 11 

bundle that covers genomic tests with a fixed rebate, encouraging 12 

health institutions to consider clinical utility-driven testing 13 

strategies in balancing off CGS tests against inexpensive 14 

alternatives.39 As current health technology assessment (HTA) 15 

practices can overlook how health system incentives are 16 

associated with utilization and uptake, simulation models, 17 

particularly systems dynamics, can fill this gap by analyzing 18 

time-to-treatment and total cost of care episodes under varying 19 

conditions in clinical services.40–44  20 

 21 

 22 

 23 
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Evidence, Assessments, and Approval Processes 1 

Recommendations for CGS implementation need to be evaluated for 2 

impact 3 

Professional societies and expert consortia have issued 4 

recommendations to guide CGS implementation, addressing 5 

processes such as test requisition, data management, and 6 

clinical follow-up.45–49 However, evaluations of these 7 

recommendations are lacking due to implementation barriers, 8 

including a lack of confidence and knowledge among healthcare 9 

providers, concerns about infrastructure costs within health 10 

systems, and reluctance of payers to cover and reimburse 11 

services.22,50–53 The lack of robust evaluations from multiple 12 

stakeholder perspectives can result in conflicting 13 

implementation approaches that increase risks for unintentional 14 

harm and reduce clinical utility while increasing costs to 15 

health systems.54–56 For example, the American College of Medical 16 

Genetics and Genomics recommends opportunistic screening of 17 

existing genomic information for additional actionable 18 

information in a “minimum gene list” whenever whole exome or 19 

genome sequencing is conducted.57 In contrast, the European 20 

Society of Human Genetics discourages opportunity screening 21 

except for the purposes of evidence generation to inform future 22 

policymaking.58 Rigorous studies of CGS are needed to better 23 
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ensure that implementation recommendations optimize benefits and 1 

minimize risks.  2 

Demonstrating the value of CGS from multiple perspectives 3 

through a combination of economic modeling, prospective trials, 4 

and real-world data analyses may be particularly important to 5 

help different stakeholders prioritize needed infrastructure. 6 

Until then, health systems would likely be wary about adopting 7 

emerging applications; payers would be reserved about covering 8 

these services;50,58,59 and regulators would be cautious about 9 

approving their use.60–62 10 

 11 

Addressing uncertainty in decision-making – ‘daring to change’ 12 

in systems and laboratories  13 

Insurers and payers seek answers on the added value and cost-14 

effectiveness of CGS, but estimating monetary and patient 15 

outcomes is challenging and relies on model-based economic 16 

evaluations.63,64 Given the complexity and scope of 17 

implementation, fully and consistently capturing the added value 18 

is not always feasible, which may lead to uncertainty in 19 

decision-making for payers, hospitals, and laboratories. This 20 

uncertainty relates to the fact that choices needed to be made 21 

without having complete insight into all added values compared 22 

to current technologies. A decision is needed, followed by more 23 
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improvements and valuation of CGS in the patient journey with 1 

the data available.  2 

Apart from impacts on costs and effects for society, the 3 

educational, technical, and material requirements to support CGS 4 

implementation are also substantial, and institutions may lack 5 

confidence in their financial and human resources to adopt and 6 

sustain recommendations provided by decision-makers fully.65–67 To 7 

prevent further delays in patients’ access to innovative 8 

technologies, discussions with payers and other relevant parties 9 

are therefore needed to transition towards more suitable 10 

assessment and adoption strategies in the face of this decision 11 

uncertainty.  12 

CGS implementation and usage also require laboratories to 13 

transform their workforce and design. These changes can 14 

alleviate the financial burden to meet demand, enhance testing 15 

scope and capacity, and support ordering institutions as a 16 

valuable resource. Laboratories should consult with other 17 

stakeholders to explore solutions to address the complexities of 18 

these adjustments. Implementing CGS depends on macro-level 19 

(e.g., design, equipment) and micro-level (e.g., workforce, 20 

tasks) changes in the laboratory space, and the hope that these 21 

modifications can bring changes that cannot be empirically 22 

measured, but can, nonetheless, offer significant value. 23 
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 1 

A unified HTA pathway and the need for life-cycle evidence  2 

Traditional HTA processes, designed for ‘on/off’ health system 3 

decisions and often for drug assessments, and the siloed nature 4 

of resource allocation decisions across and within systems may 5 

limit the optimization of CGS-related health and economic 6 

outcomes.68,69 A unified HTA pathway with model- and data-sharing 7 

is crucial to avoid opportunity costs from uncoordinated, 8 

unstandardized, and delayed prioritization of HTA assessments. 9 

Neglecting these issues may result in structural inefficiencies, 10 

with a lack of consideration for technological changes, fiscal 11 

sustainability, and evidentiary uncertainty compromising the 12 

optimal and equitable adoption of genomic technologies.70–73 13 

Establishing a unified, life-cycle health technology assessment 14 

(LC-HTA) approach towards incremental evidence development, 15 

based on real-world data, could be one approach to facilitating 16 

CGS implementation.68,71 LC-HTA is defined as standardized data 17 

and methods that enable iterative and ongoing evidence 18 

appraisals throughout technology life-cycles as part of a 19 

learning healthcare system.68 Its framework incorporates standard 20 

HTA concepts with on-market evidence that follows initial 21 

regulatory authorization and conditional health system 22 

reimbursement and risk-based pricing strategies based on value 23 
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of information analysis and payers’ risk tolerance for increased 1 

flexibility.71 Managed and time-limited access in reimbursing 2 

expensive therapies is central to LC-HTA and has been piloted in 3 

many countries worldwide, including publicly funded healthcare 4 

systems, such as the UK, Canada, and Australia, and primarily 5 

private systems such as the US.74–76 Oncology remains the most 6 

common indication for managed access, and to date, agreements 7 

have yet to consider CGS access.  8 

Achieving LC-HTA in an international context requires capacity-9 

building and investment in learning healthcare infrastructure to 10 

enable ongoing monitoring, evaluation, and deliberation. It also 11 

necessitates wide stakeholder engagement for endorsement, 12 

collaborative evidence generation, and cross-jurisdictional data 13 

sharing. LC-HTA deliberation processes should be embedded into 14 

health systems to adapt to the evolving field of genomic 15 

medicine. With proper design, these efforts could mitigate 16 

uncertainty and ensure value-centered and cost-effective CGS 17 

implementation in clinical practice. 18 

 19 

Building a robust patient-centered evidence base on CGS outcomes 20 

that integrates patient perspectives and preferences  21 

Beyond system readiness is the need for high-quality genetic 22 

testing services that value patient and family perspectives and 23 
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preferences – with patients and families being informed, 1 

respected, and involved in their care in meaningful ways 2 

throughout their clinical journey.77,78 This journey involves 3 

numerous relationships and interactions, spanning diagnostic 4 

assessments, genomic testing, and complex decision-making 5 

processes. Therefore, effective, efficient, and equitable CGS 6 

implementation requires meaningful engagement of patients and 7 

families that facilitates active involvement and improvement in 8 

their care.79,80 9 

The current evidence base on CGS outcomes focuses on a narrow 10 

subset of measures, such as diagnostic yield, rather than 11 

outcomes recommended by HTA agencies, such as quality-adjusted 12 

life-years (QALY).81,82 Studies generating evidence on the health 13 

outcomes of CGS using metrics such as the QALY would 14 

significantly improve the evidence base for implementation. That 15 

said, preference-based health-related quality-of-life 16 

instruments commonly used to generate QALY weights, such as EQ-17 

5L, might not fully capture the patient-related benefits of 18 

CGS.83 To date, few studies have utilized instruments that 19 

thoroughly assess psychosocial outcomes or investigated the 20 

broader impacts on patients’ and families’ wellbeing (e.g., via 21 

non-clinical routes). However, evidence suggests these outcomes 22 

are highly valued by patients and families, along with access to 23 

genomic testing and a timely diagnosis.84,85 The complexity of 24 
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genomic information and actionability creates challenges for its 1 

valuation, necessitating additional consideration for non-health 2 

outcomes.86 The application of approaches, such as cost-3 

consequences analysis or multi-criteria decision analysis – 4 

which allow evidence on QALY outcomes to be considered alongside 5 

broader measures of patient benefit – should be encouraged. 6 

Regardless of which measures are used to quantify the benefits 7 

of CGS for patients and their families, a coordinated global 8 

effort is required to ensure a multifaceted, robust evidence 9 

base on CGS outcomes. Data collection should be harmonized where 10 

possible to ensure sufficient data are collected, keeping in 11 

mind, for example, relatively small rare-disease 12 

populations.81,87    13 
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