96 research outputs found

    Análisis cultural de los ítems de dos listas de verificación quirúrgica de España y Argentina

    Get PDF
    Objective To compare the agreement between two surgical checklists implanted in two hospitals in Spain and Argentina, using the international classification for patient safety as a framework. Method This was an expert opinion study carried out using an ad hoc questionnaire in electronic format, which included 7 of the 13 categories of the international classification for patient safety. Fifteen surgical security experts from each country participated in this study by classifying the items on the checklists into the selected ICPS categories. The data were analyzed with SPSS V20 software. Results There was a greater percentage of classifications in fields related to the prevention of critical events. The category “clinical processes and procedures” was mentioned most frequently in both lists. Conclusion The implementation of the surgical safety checklist is variable. Experts considered that the Argentinian list was clearer in every dimension

    Woodland restoration on agricultural land: long-term impacts on soil quality

    Get PDF
    Woodland restoration is underway globally, to counter the negative soil quality and ecological impacts of agricultural expansion and woodland fragmentation, and restore or enhance biodiversity, ecosystem functions and services. However, we lack information about the long‐term effects of woodland restoration on agricultural soils, particularly at temporal scales meaningful to woodland and soil development. This study utilised soil and earthworm sampling across a chronosequence of sites transitioning from ‘agricultural land’ to ‘secondary woodland’ (50‐110 years) and ‘ancient woodland’ (>400 years), with the goal of quantifying the effects of woodland restoration on agricultural land, on key soil quality parameters (soil bulk density, pH, carbon and nitrogen stocks, and earthworm abundance, biomass, species richness and diversity). Broad‐leaved woodland restoration led to significantly greater soil organic carbon (SOC) stocks compared to arable land, and young (50‐60 years) secondary woodland increased earthworm species and functional diversity compared to both arable and pasture agricultural land. SOC stocks in secondary broad‐leaved woodlands (50‐110 years) were comparable to those found in long‐term ancient woodlands (>400 years). Our findings show that broad‐leaved woodland restoration of agricultural land can lead to meaningful soil ecological improvement and gains in SOC within 50 to 110 years, and provide intel on how restoration activities may be best targeted to maximise soil quality and functions

    Physical Activity Across Adulthood and Bone Health in Later Life: The 1946 British Birth Cohort

    Get PDF
    © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc. Leisure-time physical activity (LTPA) is widely recommended for the prevention of osteoporosis and fractures in older populations. However, whether the beneficial effects of LTPA on bone accumulate across life and are maintained even after reduction or cessation of regular PA in later life is unknown. We examined whether LTPA across adulthood was cumulatively associated with volumetric and areal bone mineral density (vBMD, aBMD) at ages 60 to 64 and whether associations were mediated by lean mass. Up to 1498 participants from the Medical Research Council National Survey of Health and Development were included in analyses. LTPA was self-reported at ages 36, 43, 53, and 60 to 64, and responses summed to generate a cumulative score (range 0 = inactive at all four ages to 8 = most active at all four ages). Total and trabecular vBMD were measured at the distal radius using pQCT and aBMD at the total hip and lumbar spine (L1 to L4) using DXA. Linear regression was used to test associations of the cumulative LTPA score with each bone outcome. After adjustment for height and weight, a 1-unit increase in LTPA score (95% CI) in men was associated with differences of 1.55% (0.78% to 2.31%) in radial trabecular vBMD, 0.83% (0.41% to 1.25%) in total hip aBMD, and 0.97% (0.44% to 1.49%) in spine aBMD. Among women, positive associations were seen for radial trabecular vBMD and total hip aBMD, but only among those of greater weight (LTPA × weight interaction p ≤ 0.01). In men, there was evidence to suggest that lean mass index may partly mediate these associations. These findings suggest that there are cumulative benefits of LTPA across adulthood on BMD in early old age, especially among men. The finding of weaker associations among women suggests that promotion of specifıc types of LTPA may be needed to benefit bone health in women. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
    corecore