114 research outputs found

    Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser

    Full text link
    Gisbert Winnewisser's astronomical career was practically coextensive with the whole development of molecular radio astronomy. Here I would like to pick out a few of his many contributions, which I, personally, find particularly interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter Astronomy Group. To appear in the Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies" eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer: Berlin

    Straw blood cell count, growth, inhibition and comparison to apoptotic bodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress <it>in vitro</it>. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis.</p> <p>Results</p> <p>There are approximately 100 billion, unconventional, tubular straw cells in human blood at any given time. The straw blood cell count (SBC) is 45 million/ml, which accounts for 6.9% of the bloods dry weight. Straw cells originating from the lungs, liver and lymphocytes have varying nodules, hairiness and dimensions. Lipid profiling reveals severe disruption of the plasma membrane in CACO cells during transformation. The growth rates for the elongation of filaments and enlargement of rabbit straw cells is 0.6~1.1 (μm/hr) and 3.8 (μm<sup>3</sup>/hr), respectively. Studies using apoptosis inhibitors and a tubular transformation inhibitor in CACO2 cells and in mice suggested apoptosis produced apoptotic bodies are mediated differently than tubular transformation produced straw cells. A single dose of 0.01 mg/kg/day of p38 MAPK inhibitor in wild type mice results in a 30% reduction in the SBC. In 9 domestic animals SBC appears to correlate inversely with an animal's average lifespan (R<sup>2 </sup>= 0.7).</p> <p>Conclusion</p> <p>Straw cells are observed residing in the mammalian blood with large quantities. Production of SBC appears to be constant for a given animal and may involve a stress-inducible protein kinase (P38 MAPK). Tubular transformation is a programmed cell survival process that diverges from apoptosis. SBCs may be an important indicator of intrinsic aging-related stress.</p

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Heart Rate-Corrected QT Interval Helps Predict Mortality after Intentional Organophosphate Poisoning

    Get PDF
    INTRODUCTION: In this study, we investigated the outcomes for patients with intentional organophosphate poisoning. Previous reports indicate that in contrast to normal heart rate-corrected QT intervals (QTc), QTc prolongation might be indicative of a poor prognosis for patients exposed to organophosphates. METHODS: We analyzed the records of 118 patients who were referred to Chang Gung Memorial Hospital for management of organophosphate poisoning between 2000 and 2011. Patients were grouped according to their initial QTc interval, i.e., normal (<0.44 s) or prolonged (>0.44 s). Demographic, clinical, laboratory, and mortality data were obtained for analysis. RESULTS: The incidence of hypotension in patients with prolonged QTc intervals was higher than that in the patients with normal QTc intervals (P = 0.019). By the end of the study, 18 of 118 (15.2%) patients had died, including 3 of 75 (4.0%) patients with normal QTc intervals and 15 of 43 (34.9%) patients with prolonged QTc intervals. Using multivariate-Cox-regression analysis, we found that hypotension (OR = 10.930, 95% CI = 2.961-40.345, P = 0.000), respiratory failure (OR = 4.867, 95% CI = 1.062-22.301, P = 0.042), coma (OR = 3.482, 95% CI = 1.184-10.238, P = 0.023), and QTc prolongation (OR = 7.459, 95% CI = 2.053-27.099, P = 0.002) were significant risk factors for mortality. Furthermore, it was revealed that non-survivors not only had longer QTc interval (503.00±41.56 versus 432.71±51.21 ms, P = 0.002), but also suffered higher incidences of hypotension (83.3 versus 12.0%, P = 0.000), shortness of breath (64 versus 94.4%, P = 0.010), bronchorrhea (55 versus 94.4%, P = 0.002), bronchospasm (50.0 versus 94.4%, P = 0.000), respiratory failure (94.4 versus 43.0%, P = 0.000) and coma (66.7 versus 11.0%, P = 0.000) than survivors. Finally, Kaplan-Meier analysis demonstrated that cumulative mortality was higher among patients with prolonged QTc intervals than among those with normal QTc intervals (Log-rank test, Chi-square test = 20.36, P<0.001). CONCLUSIONS: QTc interval helps predict mortality after intentional organophosphate poisoning

    Staying active under restrictions: Changes in type of physical exercise during the initial COVID-19 lockdown

    Get PDF
    Copyright: © 2021 by the authors. The COVID-19 pandemic and the associated governmental restrictions suddenly changed everyday life and potentially affected exercise behavior. The aim of this study was to explore whether individuals changed their preference for certain types of physical exercise during the pandemic and to identify risk factors for inactivity. An international online survey with 13,881 adult participants from 18 countries/regions was conducted during the initial COVID-19 related lock-down (between April and May 2020). Data on types of exercise performed during and before the initial COVID-19 lockdown were collected, translated, and categorized (free-text input). Sankey charts were used to investigate these changes, and a mixed-effects logistic regression model was used to analyze risks for inactivity. Many participants managed to continue exercising but switched from playing games (e.g., football, tennis) to running, for example. In our sample, the most popular exercise types during the initial COVID-19 lockdown included endurance, muscular strength, and multimodal exercise. Regarding risk factors, higher education, living in rural areas, and physical activity before the COVID-19 lockdown reduced the risk for inactivity during the lockdown. In this relatively active multinational sample of adults, most participants were able to continue their preferred type of exercise despite restrictions, or changed to endurance type activities. Very few became physically inactive. It seems people can adapt quickly and that the constraints imposed by social distancing may even turn into an opportunity to start exercising for some. These findings may be helpful to identify individuals at risk and optimize interventions following a major context change that can disrupt the exercise routine

    Metabolomic Profiling Reveals Mitochondrial-Derived Lipid Biomarkers That Drive Obesity-Associated Inflammation

    Get PDF
    Obesity has reached epidemic proportions worldwide. Several animal models of obesity exist, but studies are lacking that compare traditional lard-based high fat diets (HFD) to “Cafeteria diets" (CAF) consisting of nutrient poor human junk food. Our previous work demonstrated the rapid and severe obesogenic and inflammatory consequences of CAF compared to HFD including rapid weight gain, markers of Metabolic Syndrome, multi-tissue lipid accumulation, and dramatic inflammation. To identify potential mediators of CAF-induced obesity and Metabolic Syndrome, we used metabolomic analysis to profile serum, muscle, and white adipose from rats fed CAF, HFD, or standard control diets. Principle component analysis identified elevations in clusters of fatty acids and acylcarnitines. These increases in metabolites were associated with systemic mitochondrial dysfunction that paralleled weight gain, physiologic measures of Metabolic Syndrome, and tissue inflammation in CAF-fed rats. Spearman pairwise correlations between metabolites, physiologic, and histologic findings revealed strong correlations between elevated markers of inflammation in CAF-fed animals, measured as crown like structures in adipose, and specifically the pro-inflammatory saturated fatty acids and oxidation intermediates laurate and lauroyl carnitine. Treatment of bone marrow-derived macrophages with lauroyl carnitine polarized macrophages towards the M1 pro-inflammatory phenotype through downregulation of AMPK and secretion of pro-inflammatory cytokines. Results presented herein demonstrate that compared to a traditional HFD model, the CAF diet provides a robust model for diet-induced human obesity, which models Metabolic Syndrome-related mitochondrial dysfunction in serum, muscle, and adipose, along with pro-inflammatory metabolite alterations. These data also suggest that modifying the availability or metabolism of saturated fatty acids may limit the inflammation associated with obesity leading to Metabolic Syndrome

    HIV-1 Vpr Triggers Mitochondrial Destruction by Impairing Mfn2-Mediated ER-Mitochondria Interaction

    Get PDF
    Human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) has been shown to induce host cell death by increasing the permeability of mitochondrial outer membrane (MOM). The mechanism underlying the damage to the mitochondria by Vpr, however, is not clearly illustrated. In this study, Vpr that is introduced, via transient transfection or lentivirus infection, into the human embryonic kidney cell line HEK293, human CD4+ T lymphoblast cell line SupT1, or human primary CD4+ T cells serves as the model system to study the molecular mechanism of Vpr-mediated HIV-1 pathogenesis. The results show that Vpr injures MOM and causes a loss in membrane potential (MMP) by posttranscriptionally reducing the expression of mitofusin 2 (Mfn2) via VprBP-DDB1-CUL4A ubiquitin ligase complex, gradually weakening MOM, and increasing mitochondrial deformation. Vpr also markedly decreases cytoplasmic levels of dynamin-related protein 1 (DRP1) and increases bulging in mitochondria-associated membranes (MAM), the specific regions of endoplasmic reticulum (ER) which form physical contacts with the mitochondria. Overexpression of Mfn2 and DRP1 significantly decreased the loss of MMP and apoptotic cell death caused by Vpr. Furthermore, by employing time-lapse confocal fluorescence microscopy, we identify the transport of Vpr protein from the ER, via MAM to the mitochondria. Taken together, our results suggest that Vpr-mediated cellular damage may occur on an alternative protein transport pathway from the ER, via MAM to the mitochondria, which are modulated by Mfn2 and DRP1

    Effect of walking on circadian rhythms and sleep quality of patients with lung cancer: A randomised controlled trial

    Get PDF
    Background:Sleep disturbances and poor rest-activity rhythms, which can reduce the quality of life, are highly prevalent among patients with lung cancer.Methods:This trial investigated the effects of a 12-week exercise intervention including home-based walking exercise training and weekly exercise counseling on 111 lung cancer patients. Participants were randomly allocated to receive the intervention or usual-care. Outcomes included objective sleep (total sleep time, TST; sleep efficiency, SE; sleep onset latency, SOL; and wake after sleep onset, WASO), subjective sleep (Pittsburgh Sleep Quality Index, PSQI), and rest-activity rhythms (r24 and I<O). Outcomes were assessed at baseline and 3 and 6 months after intervention.Results:The PSQI (Wald χ 2 =15.16, P=0.001) and TST (Wald χ 2 =7.59, P=0.023) of the patients in the exercise group significantly improved 3 and 6 months after intervention. The moderating effect of I<O on TST was significant (β of group × I<O=3.70, P=0.032).Conclusions:The walking program is an effective intervention for improving the subjective and objective sleep quality of lung cancer patients and can be considered an optional component of lung cancer rehabilitation.Link_to_subscribed_fulltex

    Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping

    Get PDF
    To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks
    corecore