43 research outputs found

    Sea Urchins Predation Facilitates Coral Invasion in a Marine Reserve

    Get PDF
    Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem

    Structure and non-structure of centrosomal proteins

    Get PDF
    Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set), since their genes contain in average more exons (20.3 versus 14.6). They are rich in predicted disordered regions, which cover 57% of their length, compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be disordered and coiled-coil at the same time: 55 proteins (15%) contain disordered and coiled-coil fragments that cover more than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical residues against 17% predicted as strands), and even more in the whole centrosomal proteome (52% against 7%), while for control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins), which may correspond to alpha-helix forming molecular recognition features (α-MoRFs). We performed expression assays for 120 full-length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are often insoluble: Only 39 out of 120 expressed proteins (32%) and 19 out of 72 domains (26%) were soluble. We built or retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal proteins (23%), for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Commercial Nucleic-Acid Amplification Tests for Diagnosis of Pulmonary Tuberculosis in Respiratory Specimens: Meta-Analysis and Meta-Regression

    Get PDF
    BACKGROUND: Hundreds of studies have evaluated the diagnostic accuracy of nucleic-acid amplification tests (NAATs) for tuberculosis (TB). Commercial tests have been shown to give more consistent results than in-house assays. Previous meta-analyses have found high specificity but low and highly variable estimates of sensitivity. However, reasons for variability in study results have not been adequately explored. We performed a meta-analysis on the accuracy of commercial NAATs to diagnose pulmonary TB and meta-regression to identify factors that are associated with higher accuracy. METHODOLOGY/PRINCIPAL FINDINGS: We identified 2948 citations from searching the literature. We found 402 articles that met our eligibility criteria. In the final analysis, 125 separate studies from 105 articles that reported NAAT results from respiratory specimens were included. The pooled sensitivity was 0.85 (range 0.36-1.00) and the pooled specificity was 0.97 (range 0.54-1.00). However, both measures were significantly heterogeneous (p<.001). We performed subgroup and meta-regression analyses to identify sources of heterogeneity. Even after stratifying by type of commercial test, we could not account for the variability. In the meta-regression, the threshold effect was significant (p = .01) and the use of other respiratory specimens besides sputum was associated with higher accuracy. CONCLUSIONS/SIGNIFICANCE: The sensitivity and specificity estimates for commercial NAATs in respiratory specimens were highly variable, with sensitivity lower and more inconsistent than specificity. Thus, summary measures of diagnostic accuracy are not clinically meaningful. The use of different cut-off values and the use of specimens other than sputum could explain some of the observed heterogeneity. Based on these observations, commercial NAATs alone cannot be recommended to replace conventional tests for diagnosing pulmonary TB. Improvements in diagnostic accuracy, particularly sensitivity, need to be made in order for this expensive technology to be worthwhile and beneficial in low-resource countries

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Sirt1 protects against high-fat diet-induced metabolic damage

    No full text
    The identification of new pharmacological approaches to effectively prevent, treat, and cure the metabolic syndrome is of crucial importance. Excessive exposure to dietary lipids causes inflammatory responses, deranges the homeostasis of cellular metabolism, and is believed to constitute a key initiator of the metabolic syndrome. Mammalian Sirt1 is a protein deacetylase that has been involved in resveratrol-mediated protection from high-fat diet-induced metabolic damage, but direct proof for the implication of Sirt1 has remained elusive. Here, we report that mice with moderate overexpression of Sirt1 under the control of its natural promoter exhibit fat mass gain similar to wild-type controls when exposed to a high-fat diet. Higher energy expenditure appears to be compensated by a parallel increase in food intake. Interestingly, transgenic Sirt1 mice under a high-fat diet show lower lipid-induced inflammation along with better glucose tolerance, and are almost entirely protected from hepatic steatosis. We present data indicating that such beneficial effects of Sirt1 are due to at least two mechanisms: induction of antioxidant proteins MnSOD and Nrf1, possibly via stimulation of PGC1α, and lower activation of proinflammatory cytokines, such as TNFα and IL-6, via down-modulation of NFκB activity. Together, these results provide direct proof of the protective potential of Sirt1 against the metabolic consequences of chronic exposure to a high-fat diet
    corecore