1,662 research outputs found

    Central obesity as a precursor to the metabolic syndrome in the AusDiab study and Mauritius

    Full text link
    Evidence from epidemiologic studies that central obesity precedes future metabolic change and does not occur concurrently with the appearance of the blood pressure, glucose, and lipid abnormalities that characterize the metabolic syndrome (MetS) has been lacking. Longitudinal surveys were conducted in Mauritius in 1987, 1992, and 1998, and in Australia in 2000 and 2005 (AusDiab). This analysis included men and women (aged 25 years) in three cohorts: AusDiab 2000&ndash;2005 (n = 5,039), Mauritius 1987&ndash;1992 (n = 2,849), and Mauritius 1987&ndash;1998 (n = 1,999). MetS components included waist circumference, systolic blood pressure, fasting and 2-h postload plasma glucose, high-density lipoprotein (HDL) cholesterol, triglycerides, and homeostasis model assessment of insulin sensitivity (HOMA-S) (representing insulin sensitivity). Linear regression was used to determine which baseline components predicted deterioration in other MetS components over 5 years in AusDiab and 5 and 11 years in Mauritius, adjusted for age, sex, and ethnic group. Baseline waist circumference predicted deterioration (P &lt; 0.01) in four of the other six MetS variables tested in AusDiab, five of six in Mauritius 1987&ndash;1992, and four of six in Mauritius 1987&ndash;1998. In contrast, an increase in waist circumference between baseline and follow-up was only predicted by insulin sensitivity (HOMA-S) at baseline, and only in one of the three cohorts. These results suggest that central obesity plays a central role in the development of the MetS and appears to precede the appearance of the other MetS components.<br /

    The impact of salsalate treatment on serum levels of advanced glycation end products in type 2 diabetes.

    Get PDF
    OBJECTIVE Salsalate is a nonacetylated salicylate that lowers glucose levels in people with type 2 diabetes (T2D). Here we examined whether salsalate also lowered serum-protein-bound levels of early and advanced glycation end products (AGEs) that have been implicated in diabetic vascular complications. RESEARCH DESIGN AND METHODS Participants were from the Targeting Inflammation Using Salsalate for Type 2 Diabetes (TINSAL-T2D) study, which examined the impact of salsalate treatment on hemoglobin A1c (HbA1c) and a wide variety of other parameters. One hundred eighteen participants received salsalate, 3.5 g/day for 48 weeks, and 109 received placebo. Early glycation product levels (HbA1c and fructoselysine [measured as furosine]) and AGE levels (glyoxal and methylglyoxal hydroimidazolones [G-(1)H, MG-(1)H], carboxymethyllysine [CML], carboxyethyllysine [CEL], pentosidine) were measured in patient serum samples. RESULTS Forty-eight weeks of salsalate treatment lowered levels of HbA1c and serum furosine (P \u3c 0.001) and CML compared with placebo. The AGEs CEL and G-(1)H and MG-(1)H levels were unchanged, whereas pentosidine levels increased more than twofold (P \u3c 0.001). Among salsalate users, increases in adiponectin levels were associated with lower HbA1c levels during follow-up (P \u3c 0.001). Changes in renal and inflammation factor levels were not associated with changes in levels of early or late glycation factors. Pentosidine level changes were unrelated to changes in levels of renal function, inflammation, or cytokines. CONCLUSIONS Salsalate therapy was associated with a reduction in early but not late glycation end products. There was a paradoxical increase in serum pentosidine levels suggestive of an increase in oxidative stress or decreased clearance of pentosidine precursor

    A conserved amino-terminal Shc domain binds to phosphotyrosine motifs in activated receptors and phosphopeptides

    Get PDF
    AbstractBackground: Signal transduction by growth factor receptor protein-tyrosine kinases is generally initiated by autophosphorylation on tyrosine residues following ligand binding. Phosphotyrosines within activated receptors form binding sites for the Src homology 2 (SH2) domains of cytoplasmic signalling proteins. One such protein, Shc, is tyrosine phosphorylated in response to a large number of growth factors and cytokines. Phosphorylation of Shc on tyrosine residue Y317 allows binding to the SH2 domain of Grb2, and hence stimulation of the Ras pathway. Shc is therefore implicated as an adaptor protein able to couple normal and oncogenic protein-tyrosine kinases to Ras activation. Shc itself contains an SH2 domain at its carboxyl terminus, but the function of the amino-terminal half of the protein is unknown.Results We have found that the Shc amino-terminal region binds to a number of tyrosine-phosphorylated proteins in v-src-transformed cells. This domain also bound directly to the activated epidermal growth factor (EGF) receptor. A phosphotyrosine (pY)-containing peptide modeled after the Shc-binding site in polyoma middle T antigen (LLSNPTpYSVMRSK) was able to compete efficiently with the activated EGF receptor for binding to the Shc amino terminus. This competition was dependent on phosphorylation of the tyrosine residue within the peptide, and was abrogated by deletion of the leucine residue at position –5. The Shc amino-terminal domain also bound to the autophosphorylated nerve growth factor receptor (Trk), but bound significantly less well to a mutant receptor in which tyrosine Y490 in the receptor's Shc-binding site had been substituted by phenylalanine.Conclusion These data implicate the amino-terminal region of Shc in binding to activated receptors and other tyrosine-phosphorylated proteins. Binding appears to be specific for phosphorylated tyrosine residues within the sequence NPXpY, which is conserved in many Shc-binding sites. The Shc amino-terminal region bears only very limited sequence identity to known SH2 domains, suggesting that it represents a new class of phosphotyrosine-binding modules. Consistent with this view, the amino-terminal Shc domain is highly conserved in a Drosophila Shc homologue. Binding of Shc to activated receptors through its amino terminus could leave the carboxy-terminal SH2 domain free for other interactions. In this way, Shc may function as an adaptor protein to bring two tyrosine-phosphorylated proteins together

    Targeting inflammation using salsalate in patients with type 2 diabetes: effects on flow-mediated dilation (TINSAL-FMD).

    Get PDF
    OBJECTIVE: To test whether inhibiting inflammation with salsalate improves endothelial function in patients with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We conducted an ancillary study to the National Institutes of Health-sponsored, multicenter, randomized, double-masked, placebo-controlled trial evaluating the safety and efficacy of salsalate in targeting inflammation to improve glycemia in patients with T2D. Flow-mediated, endothelium-dependent dilation (FMD) and endothelium-independent, nitroglycerin-mediated dilation (NMD) of the brachial artery were assessed at baseline and 3 and 6 months following randomization to either salsalate 3.5 g/day or placebo. The primary end point was change in FMD at 6 months. RESULTS: A total of 88 participants were enrolled in the study, and data after randomization were available for 75. Patients in the treatment and control groups had similar ages (56 years), BMI (33 kg/m(2)), sex (64% male), ethnicity, current treatment, and baseline HbA1c (7.7% [61 mmol/mol]). In patients treated with salsalate versus placebo, HbA1c was reduced by 0.46% (5.0 mmol/mol; P \u3c 0.001), fasting glucose by 16.1 mg/dL (P \u3c 0.001), and white blood cell count by 430 cells/µL (P \u3c 0.02). There was no difference in the mean change in either FMD (0.70% [95% CI -0.86 to 2.25%]; P = 0.38) or NMD (-0.59% [95% CI -2.70 to 1.51%]; P = 0.57) between the groups treated with salsalate and placebo at 6 months. Total and LDL cholesterol were 11 and 16 mg/dL higher, respectively, and urinary albumin was 2.0 µg/mg creatinine higher in the patients treated with salsalate compared with those treated with placebo (all P \u3c 0.009). CONCLUSIONS: Salsalate does not change FMD in peripheral conduit arteries in patients with T2D despite lowering HbA1c. This finding suggests that salsalate does not have an effect on vascular inflammation, inflammation does not cause endothelial dysfunction in T2D, or confounding effects of salsalate mitigate favorable effects on endothelial function
    corecore