12 research outputs found

    Tumor masses support naive T cell infiltration, activation, and differentiation into effectors

    Get PDF
    Studies of T cell responses to tumors have focused on the draining lymph node (LN) as the site of activation. We examined the tumor mass as a potential site of activation after adoptive transfer of naive tumor-specific CD8 T cells. Activated CD8 T cells were present in tumors within 24 h of adoptive transfer and proliferation of these cells was also evident 4–5 d later in mice treated with FTY720 to prevent infiltration of cells activated in LNs. To confirm that activation of these T cells occurred in the tumor and not the tumor-draining LNs, we used mice lacking LNs. Activated and proliferating tumor-infiltrating lymphocytes were evident in these mice 24 h and 4 d after naive cell transfer. T cells activated within tumors acquired effector function that was evident both ex vivo and in vivo. Both cross-presenting antigen presenting cells within the tumor and tumor cells directly presenting antigen activated these functional CD8 effectors. We conclude that tumors support the infiltration, activation, and effector differentiation of naive CD8 T cells, despite the presence of immunosuppressive mechanisms. Thus, targeting of T cell activation to tumors may present a tool in the development of cancer immunotherapy

    Computing uveal melanoma basal diameters: a comparative analysis of several novel techniques with improved accuracy

    No full text
    Abstract Background We sought to compare the accuracy of standard and novel echographic methods for computing intraocular tumor largest basal diameter (LBD). Design Multicenter, retrospective cohort study. Subjects All patients presenting with new diagnosis of uveal melanoma (UM). Methods Ultrasounds were obtained for all patients, and axial length (AL) was measured for a subset of patients. LBD was calculated as: (1) a single chord measured on B scan ultrasound (one-chord method [1CM]), or (2) by subdividing the basal diameter into two chords, which were summated (two-chord method [2CM]), or (3) by a mathematically-derived formula (MF) based on geometric relationships. The accuracy of each method was then compared, and sensitivity of each technique to factors such as tumor size and AL were analyzed. Main outcome measures Accuracy, robustness, correctness of predicted plaque size. Results 116 UMs were analyzed; 1CM-calculated LBD underestimated 2CM-calculated LBD by 7.5% and underestimated LBD by MF by 7.8%; 2CM and MF were tightly correlated (average LBD difference = 0.038%). At larger LBDs, 1CM underestimated 2CM and MF by a much greater percentage (p  12 mm, where a single chord on ultrasound is more likely to lead to incorrect, undersized plaque selection. Our MF can be applied with great accuracy even in cases where the AL of the eye is not measured, using the population average AL (23.7 mm), and the formula LBD=23.7sin⁡−1(chord  length/chord  length23.723.7) {\text{LBD}} = 23.7\sin^{ - 1} ({{{\text{chord}}\;{\text{length}}} \mathord{\left/ {\vphantom {{{\text{chord}}\;{\text{length}}} {23.7}}} \right. \kern-0pt} {23.7}}) LBD=23.7sin-1(chordlength/23.7)

    Pancreas and islet transplantation: An update

    No full text

    Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy

    No full text

    Pancreas transplantation: An update

    No full text

    The Immunology of Hormone Receptor Positive Breast Cancer

    No full text
    corecore