431 research outputs found

    Prolapse of gastric mucosa

    Get PDF

    The Seasonal Cycle and Interannual Variability in Stratospheric Temperatures and Links to the Brewer–Dobson Circulation: An Analysis of MSU and SSU Data

    Get PDF
    Previous studies have shown that lower-stratosphere temperatures display a near-perfect cancellation between tropical and extratropical latitudes on both annual and interannual time scales. The out-of-phase relationship between tropical and high-latitude lower-stratospheric temperatures is a consequence of variability in the strength of the Brewer–Dobson circulation (BDC). In this study, the signal of the BDC in stratospheric temperature variability is examined throughout the depth of the stratosphere using data from the Stratospheric Sounding Unit (SSU). While the BDC has a seemingly modest signal in the annual cycle in zonal-mean temperatures in the mid- and upper stratosphere, it has a pronounced signal in the month-to-month and interannual variability. Tropical and extratropical temperatures are significantly negatively correlated in all SSU channels on interannual time scales, suggesting that variations in wave driving are a major factor controlling global-scale temperature variability not only in the lower stratosphere (as shown in previous studies), but also in the mid- and upper stratosphere. The out-of-phase relationship between tropical and high latitudes peaks at all levels during the cold-season months: December–March in the Northern Hemisphere and July–October in the Southern Hemisphere. In the upper stratosphere, the out-of-phase relationship with high-latitude temperatures extends beyond the tropics and well into the extratropics of the opposite hemisphere. The seasonal cycle in stratospheric temperatures follows the annual march of insolation at all levels and latitudes except in the mid- to upper tropical stratosphere, where it is dominated by the semiannual oscillation. M

    Sensitivity of the Walker Circulation to different basic states in a linear model, The

    Get PDF
    December, 1984.Includes bibliographical references.Sponsored by the National Science Foundation ATM-8305759

    Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind

    Get PDF
    The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate

    Constraining Upper Troposphere/Lower Stratosphere Aerosol Physical Processes with High-Altitude Aircraft Measurements

    Get PDF
    Interest in a more complete understanding of the sources, composition and microphysics of stratospheric aerosol particles has intensified during recent years for several reasons: (1) small volcanic eruptions have been recognized as a driver of short-term changes in climate forcing; (2) emissions of sulfur dioxide (SO2) and other aerosol precursors have shifted to south Asia and other low latitude regions with intense vertical transport; (3) organic material has been recognized as a key contributor to lower stratospheric aerosol mass; and (4) interest in possible solar radiation management (geoengineering) through significant enhancements in stratospheric aerosols has intensified. To address stratospheric aerosol science issues, we are proposing a NASA Earth Ventures mission to NASA to provide extensive high-altitude aircraft measurements of critical gas-phase and aerosol properties at multiple locations across the planet. In this presentation, we will discuss the objectives of the proposed campaign, the measurements provided, the sampling strategy, and the modeling and analysis approaches that would be used to address specific science questions

    Attentional Focus During Balance Training in Idiopathic Parkinson’s Disease (PD): A Randomized Clinical Trial

    Full text link
    The purpose of this study was to compare the effects of various attentional focus strategies on balance in people with PD. Forty-nine adults with idiopathic PD were randomized into one of four groups (internal focus, external focus, no focus, and control). The three intervention groups participated in a month-long balance program. The outcomes measured were the Sensory Organization Test, Berg Balance Scale, self selected gait velocity, Dynamic Gait Index, Activities-specific Balance Confidence Scale and obstacle course completion time. These outcomes were measured at baseline, post intervention, 2-weeks post intervention, and 8-weeks post intervention. Statistical analyses yielded no significant differences among the groups. This study demonstrated that attentional focus instructions may not have a long-term effect on balance in individuals with PD. It also suggests that a standardized balance program including treadmill training, an obstacle course, and standing balance activities may not be sufficient to improve gait and balance in people with PD

    Ozone and Tracer Transport Variations in the Summer Northern Hemisphere Stratosphere

    Get PDF
    Constituent observations from the Upper Atmosphere Research Satellite (UARS) in combination with estimates of the residual circulation are used to examine the transport and chemical budgets of HF, CH4 and O3 in the summer Northern Hemisphere. Budget calculations of HF, CH4 and O3 show that the transport tendency due to the residual circulation increases in magnitude and is largely opposed by eddy motions through the summer months. Ozone budget analyses show that between 100 and 31 hPa, the magnitudes of the mean circulation and eddy transport terms increase through the summer months, producing tendencies that are factors of 2 to 3 times larger than the observed ozone change in the stratosphere. Chemical loss dominates the observed ozone decrease only at the highest latitudes, poleward of about 70°N. A comparison of observations from the Total Ozone Mapping Spectrometer with UARS-calculated total ozone suggests that poleward of 50°N, between 35% and 55% of the seasonal ozone decline during the summer occurs at altitudes below 100 hPa. The overall uncertainties, associated primarily with calculations of the residual circulation and eddy transport, are relatively large, and thus prevent accurate and useful constraints on the ozone chemical rate in the lower stratosphere

    Seasonal Variation of Mass Transport Across the Tropopause

    Get PDF
    The annual cycle of the net mass transport across the extratropical tropopause is examined. Contributions from both the global-scale meridional circulation and the mass variation of the lowermost stratosphere are included. For the northern hemisphere the mass of the lowermost stratosphere has a distinct annual cycle, whereas for the southern hemisphere, the corresponding variation is weak. The net mass transport across the tropopause in the northern hemisphere has a maximum in late spring and a distinct minimum in autumn. This variation and its magnitude compare well with older estimates based on representative Sr-90 mixing ratios. For the southern hemisphere the seasonal cycle of the net mass transport is weaker and follows roughly the annual variation of the net mass flux across a nearby isentropic surface
    • 

    corecore