2,280 research outputs found

    CD20-targeting in B-cell malignancies: novel prospects for antibodies and combination therapies

    Get PDF
    Expression of CD20 antigen by the most of transformed B cells is believed to be the driving force for targeting this molecule by using anti-CD20 monoclonal antibodies. While it is true that most lymphoma/leukemia patients can be cured, these regimens are limited by the emergence of treatment resistance. Based on these observations, development of anti-CD20 monoclonal antibodies and combination therapies have been recently proposed, in particular with the aim to optimize the cytotoxic activity. Here we outline a range of new experimental agents concerning the CD20 positive B-cell tumors which provide high benefit from conventional therapy. © 2016, Springer Science+Business Media New York

    Symbol Synchronization for Diffusive Molecular Communication Systems

    Full text link
    Symbol synchronization refers to the estimation of the start of a symbol interval and is needed for reliable detection. In this paper, we develop a symbol synchronization framework for molecular communication (MC) systems where we consider some practical challenges which have not been addressed in the literature yet. In particular, we take into account that in MC systems, the transmitter may not be equipped with an internal clock and may not be able to emit molecules with a fixed release frequency. Such restrictions hold for practical nanotransmitters, e.g. modified cells, where the lengths of the symbol intervals may vary due to the inherent randomness in the availability of food and energy for molecule generation, the process for molecule production, and the release process. To address this issue, we propose to employ two types of molecules, one for synchronization and one for data transmission. We derive the optimal maximum likelihood (ML) symbol synchronization scheme as a performance upper bound. Since ML synchronization entails high complexity, we also propose two low-complexity synchronization schemes, namely a peak observation-based scheme and a threshold-trigger scheme, which are suitable for MC systems with limited computational capabilities. Our simulation results reveal the effectiveness of the proposed synchronization~schemes and suggest that the end-to-end performance of MC systems significantly depends on the accuracy of symbol synchronization.Comment: This paper has been accepted for presentation at IEEE International Conference on Communications (ICC) 201

    Amplify-and-Forward Relaying in Two-Hop Diffusion-Based Molecular Communication Networks

    Full text link
    This paper studies a three-node network in which an intermediate nano-transceiver, acting as a relay, is placed between a nano-transmitter and a nano-receiver to improve the range of diffusion-based molecular communication. Motivated by the relaying protocols used in traditional wireless communication systems, we study amplify-and-forward (AF) relaying with fixed and variable amplification factor for use in molecular communication systems. To this end, we derive a closed-form expression for the expected end-to-end error probability. Furthermore, we derive a closed-form expression for the optimal amplification factor at the relay node for minimization of an approximation of the expected error probability of the network. Our analytical and simulation results show the potential of AF relaying to improve the overall performance of nano-networks.Comment: 7 pages, 6 figures, 1 table. Submitted to the 2015 IEEE Global Communications Conference (GLOBECOM) on April 15, 201

    Imaging techniques for ocular neoplasia

    Get PDF
    Background: Novel ocular imaging modalities have greatly impacted the diagnosis and management of different types of ocular neoplasia. In this narrative review, we summarize the practical features of popular and novel imaging modalities for ocular tumors. Methods: Four databases, including PubMed/MEDLINE, Web of Science, Scopus, and Google Scholar, were searched from January 1, 2000 to August 31, 2022. Articles reporting different imaging modalities for diagnosing or monitoring treatment responses of ocular tumors were extracted using various combinations of the following keywords: ocular neoplasia, positron emission tomography or PET, single-photon emission computed tomography or SPECT, optical coherence tomography or OCT, OCT angiography or OCTA, computed tomography or CT, ultrasonography or US, ultrasound biomicroscopy or UBM, and magnetic resonance imaging or MRI. Results: Various ocular imaging modalities had different accuracies as adjunctive tools for detecting or managing ocular tumors. Anterior ultra-high-resolution optical coherence tomography (OCT) could be used to evaluate images with < 5-µm resolution. OCT angiography provided deeper insight into retinal vascular changes associated with the malignant transformation of choroidal melanoma. OCT in children altered the diagnosis of suspicious retinoblastoma in 3% of the cases and treatment plan in 11% of the cases. While positron-emission tomography (PET)/computed tomography (CT) allowed the detection of metastatic lesions of choroidal melanoma by full-body scanning, single-photon emission CT was more sensitive compared to PET in detecting choroidal melanoma. Ultrasound biomicroscopy, with an accuracy exceeding 92.5%, could detect retinal calcification in lesions measuring 2–3 mm. Magnetic resonance imaging (MRI) had better contrast compared to ultrasound biomicroscopy and higher sensitivity compared to CT in detecting post-laminar optic nerve invasion. However, MRI had a lower spatial resolution compared to OCT. Further development of imaging modalities and their application in drug development would improve the treatment of ocular tumors. Conclusions: Although diagnosing ocular tumors depend on clinical characteristics, innovations in ocular imaging have enabled early diagnosis and timely, appropriate management of ocular neoplasia, which are conducive to favorable visual outcomes and increased life expectancy. Further systematic reviews and meta-analyses of primary studies focusing on a specific imaging modality in ocular neoplasia could precisely determine the diagnostic accuracy of each imaging modality to better guide eye practitioners with efficient diagnostic or therapeutic approaches for these sight- or life-threatening entities. Imaging modalities may play a major role in drug development in the future
    • …
    corecore