361 research outputs found

    IL-17A induces Pendrin expression and chloride-bicarbonate exchange in human bronchial epithelial cells

    Get PDF
    The epithelium plays an active role in the response to inhaled pathogens in part by responding to signals from the immune system. Epithelial responses may include changes in chemokine expression, increased mucin production and antimicrobial peptide secretion, and changes in ion transport. We previously demonstrated that interleukin-17A (IL-17A), which is critical for lung host defense against extracellular bacteria, significantly raised airway surface pH in vitro, a finding that is common to a number of inflammatory diseases. Using microarray analysis of normal human bronchial epithelial (HBE) cells treated with IL-17A, we identified the electroneutral chloride-bicarbonate exchanger Pendrin (SLC26A4) as a potential mediator of this effect. These data were verified by real-time, quantitative PCR that demonstrated a time-dependent increase in Pendrin mRNA expression in HBE cells treated with IL-17A up to 48 h. Using immunoblotting and immunofluorescence, we confirmed that Pendrin protein expression is increased in IL-17 treated HBE cells and that it is primarily localized to the mucosal surface of the cells. Functional studies using live-cell fluorescence to measure intracellular pH demonstrated that IL-17A induced chloride-bicarbonate exchange in HBE cells that was not present in the absence of IL-17A. Furthermore, HBE cells treated with short interfering RNA against Pendrin showed substantially reduced chloride-bicarbonate exchange. These data suggest that Pendrin is part of IL-17A-dependent epithelial changes and that Pendrin may therefore be a therapeutic target in IL-17A-dependent lung disease. © 2014 Adams et al

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    Disorders of compulsivity: a common bias towards learning habits.

    Get PDF
    Why do we repeat choices that we know are bad for us? Decision making is characterized by the parallel engagement of two distinct systems, goal-directed and habitual, thought to arise from two computational learning mechanisms, model-based and model-free. The habitual system is a candidate source of pathological fixedness. Using a decision task that measures the contribution to learning of either mechanism, we show a bias towards model-free (habit) acquisition in disorders involving both natural (binge eating) and artificial (methamphetamine) rewards, and obsessive-compulsive disorder. This favoring of model-free learning may underlie the repetitive behaviors that ultimately dominate in these disorders. Further, we show that the habit formation bias is associated with lower gray matter volumes in caudate and medial orbitofrontal cortex. Our findings suggest that the dysfunction in a common neurocomputational mechanism may underlie diverse disorders involving compulsion.This study was funded by the WT fellowship grant for VV (093705/Z/ 10/Z) and Cambridge NIHR Biomedical Research Centre. VV and NAH are Wellcome Trust (WT) intermediate Clinical Fellows. YW is supported by the Fyssen Fondation and MRC Studentships. PD is supported by the Gatsby Charitable Foundation. JEG has received grants from the National Institute of Drug Abuse and the National Center for Responsible Gaming. TWR and BJS are supported on a WT Programme Grant (089589/Z/09/Z). The BCNI is supported by a WT and MRC grant.This is the final published version. It's also available from Molecular Psychiatry at http://www.nature.com/mp/journal/vaop/ncurrent/full/mp201444a.html

    Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?

    Get PDF
    The field of metal-organic framework based mixed matrix membranes (M(4)s) is critically reviewed, with special emphasis on their application in CO2 capture during energy generation. After introducing the most relevant parameters affecting membrane performance, we define targets in terms of selectivity and productivity based on existing literature on process design for pre- and post-combustion CO2 capture. Subsequently, the state of the art in M(4)s is reviewed against these targets. Because final application of these membranes will only be possible if thin separation layers can be produced, the latest advances in the manufacture of M-4 hollow fibers are discussed. Finally, the recent efforts in understanding the separation performance of these complex composite materials and future research directions are outlined.European Commission FP7 608490 ERC 33574

    Neurodegenerative Diseases and Autophagy

    Get PDF
    Most neurodegenerative diseases are characterized by the accumulation of aggregated proteins within neurons. These aggregate-prone proteins cause toxicity, a phenomenon that is further exacerbated when there is defective protein clearance. Autophagy is an intracellular clearance pathway that can clear these protein aggregates and has been shown to be beneficial in the treatment of neurodegenerative diseases in a variety of model systems. Here, we introduce the key components of the autophagy machinery and signaling pathways that control this process and discuss the evidence that autophagic flux may be impaired and therefore a contributing factor in neurodegenerative disease pathogenesis. Finally, we review the use of autophagy upregulation as a therapeutic strategy to treat neurodegenerative disorders

    Contribution mapping: a method for mapping the contribution of research to enhance its impact.

    Get PDF
    Background: At a time of growing emphasis on both the use of research and accountability, it is important for research funders, researchers and other stakeholders to monitor and evaluate the extent to which research contributes to better action for health, and find ways to enhance the likelihood that beneficial contributions are realized. Past attempts to assess research 'impact' struggle with operationalizing 'impact', identifying the users of research and attributing impact to research projects as source. In this article we describe Contribution Mapping, a novel approach to research monitoring and evaluation that aims to assess contributions instead of impacts. The approach focuses on processes and actors and systematically assesses anticipatory efforts that aim to enhance contributions, so-called alignment efforts. The approach is designed to be useful for both accountability purposes and for assisting in better employing research to contribute to better action for health.Methods: Contribution Mapping is inspired by a perspective from social studies of science on how research and knowledge utilization processes evolve. For each research project that is assessed, a three-phase process map is developed that includes the main actors, activities and alignment efforts during research formulation, production and knowledge extension (e.g. dissemination and utilization). The approach focuses on the actors involved in, or interacting with, a research project (the linked actors) and the most likely influential users, who are referred to as potential key users. In the first stage, the investigators of the assessed project are interviewed to develop a preliminary version of the process map and first estimation of research-related contributions. In the second stage, potential key-users and other informants are interviewed to trace, explore and triangulate possible contributions. In the third stage, the presence and role of alignment efforts is analyzed and the preliminary results are shared with relevant stakeholders for feedback and validation. After inconsistencies are clarified or described, the results are shared with stakeholders for learning, improvement and accountability purposes.Conclusion: Contribution Mapping provides an interesting alternative to existing methods that aim to assess research impact. The method is expected to be useful for research monitoring, single case studies, comparing multiple cases and indicating how research can better be employed to contribute to better action for health. © 2012 Kok and Schuit; licensee BioMed Central Ltd

    Function of the Diiron Cluster of Escherichia coli Class Ia Ribonucleotide Reductase in Proton-Coupled Electron Transfer

    Get PDF
    The class Ia ribonucleotide reductase (RNR) from Escherichia coli employs a free-radical mechanism, which involves bidirectional translocation of a radical equivalent or “hole” over a distance of ~35 Å from the stable diferric/tyrosyl-radical (Y[subscript 122]•) cofactor in the β subunit to cysteine 439 (C[subscript 439]) in the active site of the α subunit. This long-range, intersubunit electron transfer occurs by a multistep “hopping” mechanism via formation of transient amino acid radicals along a specific pathway and is thought to be conformationally gated and coupled to local proton transfers. Whereas constituent amino acids of the hopping pathway have been identified, details of the proton-transfer steps and conformational gating within the β sununit have remained obscure; specific proton couples have been proposed, but no direct evidence has been provided. In the key first step, the reduction of Y[subscript 122]• by the first residue in the hopping pathway, a water ligand to Fe[subscript 1] of the diferric cluster was suggested to donate a proton to yield the neutral Y[subscript 122]. Here we show that forward radical translocation is associated with perturbation of the Mössbauer spectrum of the diferric cluster, especially the quadrupole doublet associated with Fe[subscript 1]. Density functional theory (DFT) calculations verify the consistency of the experimentally observed perturbation with that expected for deprotonation of the Fe[subscript 1]-coordinated water ligand. The results thus provide the first evidence that the diiron cluster of this prototypical class Ia RNR functions not only in its well-known role as generator of the enzyme’s essential Y[subscript 122]•, but also directly in catalysis.National Institutes of Health (U.S.) (GM-29595

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Real-time analysis of cAMP-mediated regulation of ciliary motility in single primary human airway epithelial cells

    Get PDF
    Airway ciliary beat frequency regulation is complex but in part influenced by cyclic adenosine monophosphate (cAMP)-mediated changes in cAMP-dependent kinase activity, yet the cAMP concentration required for increases in ciliary beat frequency and the temporal relationship between ciliary beat frequency and cAMP changes are unknown. A lentiviral gene transfer system was developed to express a fluorescence resonance energy transfer (FRET)-based cAMP sensor in ciliated cells. Expression of fluorescently tagged cAMP-dependent kinase subunits from the ciliated-cell-specifi

    Understanding why adult participants at the World Senior Games choose a healthy diet

    Get PDF
    BACKGROUND: Identifying those seniors most likely to adopt a healthy diet, the relative importance they place on certain perceived benefits associated with a healthy diet, and whether these perceived benefits are associated with selected demographic, lifestyle, and health history variables is important for directing effective dietary health promotion programs. METHODS: Analyses are based on a cross-sectional convenience sample of 670 seniors aged 50 years and older at the 2002 World Senior Games in St. George, Utah. Data are assessed using frequencies, bivariate analysis, analysis of variance, and multiple logistic regression analysis. RESULTS: Fruit and vegetable consumption was significantly higher in individuals aged 70–79, in women, in those not overweight or obese, and in those with excellent overall health. Dietary fiber consumption was significantly higher in former or never smokers, current and previous alcohol drinkers, in those not overweight or obese, and in those with excellent health. The strongest motivating factors identified for adopting a healthy diet were to improve the quality of life, to increase longevity, and to prevent disease. Of intermediate importance were the need to feel a sense of control and to satisfy likes or dislikes. Least important were the desire to experience a higher level of spirituality, social reasons, and peer acceptance. CONCLUSION: Seniors who have adopted a healthy diet are more likely to have chosen that behavior because of perceived health benefits than for personal and social benefits. Overweight or obese individuals and those in poor health were less likely to be engaged in healthy eating behavior and require special attention by dieticians and public health professionals
    corecore