1,906 research outputs found

    Coherent and radiative couplings through 2D structured environments

    Full text link
    We study coherent and radiative interactions induced among two or more quantum units, by coupling them to two-dimensional lattices acting as structured environments. This model can be representative of atoms trapped near photonic crystal slabs, trapped ions in Coulomb crystals or to surface acoustic waves on piezoelectric materials, cold atoms on state-dependent optical lattices, or even circuit QED architectures, to name a few. We compare coherent and radiative contributions for the isotropic and directional regimes of emission into the lattice, for infinite and finite lattices, highlighting their differences and existing pitfalls, e.g. related to long-time or large-lattice limits. We relate the phenomenon of directionality of emission with linear-shaped isofrequency manifolds in the dispersion relation, showing a simple way to disrupt it. For finite lattices, we study further details as the scaling of resonant number of lattice modes for the isotropic and directional regimes, and relate this behavior with known van Hove singularities in the infinite lattice limit. Further we export the understanding of emission dynamics with the decay of entanglement for two quantum, atomic or bosonic, units coupled to the 2D lattice. We analyze in some detail completely subradiant configurations of more than two atoms, which can occur in the finite lattice scenario, in contrast with the infinite lattice case. Finally we demonstrate that induced coherent interactions for dark states are zero for the finite lattice.Comment: 10 page

    Completely subradiant multi-atom architectures through 2D photonic crystals

    Full text link
    Inspired by recent advances in the manipulation of atoms trapped near 1D waveguides and pro- posals to use surface acoustic waves on piezoelectric substrates for the same purpose, we show the potential of two-dimensional platforms. We exploit the directional emission of atoms near photonic crystal slabs with square symmetry to build perfect subradiant states of 2 distant atoms, possible in 2D only for finite lattices with reflecting boundaries. We also show how to design massively parallel 1D arrays of atoms above a single crystal, useful for multi-port output of nonclassical light, by ex- ploiting destructive interference of guided resonance modes due to finite size effects. Directionality of the emission is shown to be present whenever a linear iso-frequency manifold is present in the dispersion relation of the crystal. Multi-atom radiance properties can be obtained from a simple cross-talk coefficient of a master equation, which we compare with exact atom-crystal dynamics, showing its predictive power

    Anisotropic quantum emitter interactions in two-dimensional photonic-crystal baths

    Full text link
    Quantum emitters interacting with two-dimensional photonic-crystal baths experience strong and anisotropic collective dissipation when they are spectrally tuned to 2D Van-Hove singularities. In this work, we show how to turn this dissipation into coherent dipole-dipole interactions with tuneable range by breaking the lattice degeneracy at the Van-Hove point with a superlattice geometry. Using a coupled-mode description, we show that the origin of these interactions stems from the emergence of a qubit-photon bound state which inherits the anisotropic properties of the original dissipation, and whose spatial decay can be tuned via the superlattice parameters or the detuning of the optical transition respect to the band-edges. Within that picture, we also calculate the emitter induced dynamics in an exact manner, bounding the parameter regimes where the dynamics lies within a Markovian description. As an application, we develop a four-qubit entanglement protocol exploiting the shape of the interactions. Finally, we provide a proof-of-principle example of a photonic crystal where such interactions can be obtained.Comment: 12 pages, 8 figure

    Multi-ion sensing of dipolar noise sources in ion traps

    Full text link
    Trapped-ion quantum platforms are subject to `anomalous' heating due to interactions with electric-field noise sources of nature not yet completely known. There is ample experimental evidence that this noise originates at the surfaces of the trap electrodes, and models assuming fluctuating point-like dipoles are consistent with observations, but the exact microscopic mechanisms behind anomalous heating remain undetermined. Here we show how a two-ion probe displays a transition in its dissipation properties, enabling experimental access to the mean orientation of the dipoles and the spatial extent of dipole-dipole correlations. This information can be used to test the validity of candidate microscopic models, which predict correlation lengths spanning several orders of mag- nitude. Furthermore, we propose an experiment to measure these effects with currently-available traps and techniques

    Quantum Darwinism and non-Markovian dissipative dynamics from quantum phases of the spin-1/2 XX model

    Get PDF
    Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different ability to redundantly acquire classical information about the system, being the "ferromagnetic phase" the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated to back flow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature

    Probing the spectral density of a dissipative qubit via quantum synchronization

    Get PDF
    The interaction of a quantum system, which is not accessible by direct measurement, with an external probe can be exploited to infer specific features of the system itself. We introduce a probing scheme based on the emergence of spontaneous quantum synchronization between an out-of-equilibrium qubit, in contact with an external environment, and a probe qubit. Tuning the frequency of the probe leads to a transition between synchronization in phase and antiphase. The sharp transition between these two regimes is locally accessible by monitoring the probe dynamics alone and allows one to reconstruct the shape of the spectral density of the environment
    • …
    corecore