53 research outputs found

    Electroweak Baryogenesis in the Presence of an Isosinglet Quark

    Get PDF
    We consider the possibility of electroweak baryogenesis in a simple extension of the standard model with an extra singlet complex scalar and a vector-like down quark. We show that in the present model the first-order electroweak phase transition can be strong enough to avoid the baryon asymmetry washout by sphalerons and that the CP-violating effects can be sufficient to explain the observed baryon-to-entropy ratio nB/s ~ 10^(-10). Other appealing features of the model include the generation of a CKM phase from spontaneous CP breaking at a high energy scale and a possible solution of the strong CP problem through the natural suppression of the parameter theta.Comment: LaTeX, 19 pages, 2 EPS figures, uses epsf, amsmath, amsfonts, amssym

    Complex CKM from Spontaneous CP Violation Without Flavor Changing Neutral Current

    Get PDF
    We analyse the general constraints on unified gauge models with spontaneous CP breaking that satisfy the conditions that (i) CP violation in the quark sector is described by a realistic complex CKM matrix, and (ii) there is no significant flavor changing neutral current effects in the quark sector. We show that the crucial requirement in order to conform to the above conditions is that spontaneous CP breaking occurs at a very high scale by complex vevs of standard model singlet Higgs fields. Two classes of models are found, one consisting of pure Higgs extensions and the other one involving fermionic extensions of the standard model. We give examples of each class and discuss their possible embeddings into higher unified theories. One of the models has the interesting property that spontaneous CP violation is triggered by spontaneous P violation, thereby linking the scale of CP violation to the seesaw scale for neutrino masses.Comment: Latex file ; 18 pages; No figures; some typos correcte

    Spontaneous CP Violation in a SUSY Model with a complex CKM

    Full text link
    It is pointed out that the recent measurement of the angle Îł\gamma of the unitarity triangle, providing irrefutable evidence for a complex Cabibbo-Kobayashi-Maskawa (CKM) matrix, presents a great challenge for supersymmetric models with spontaneous CP violation. We construct a new minimal extension of the minimal supersymmetric standard model (MSSM), with spontaneous CP breaking, which leads to a complex CKM matrix, thus conforming to present experimental data. This is achieved through the introduction of two singlet chiral superfields and a vector-like quark chiral superfield which mixes with the standard quarks. A Z3Z_3 symmetry is introduced in order to have a potential solution to the strong CP problem.Comment: 12 pages. Uses the elsart.cls LaTeX class. Minor corrections and references adde

    D0−Dˉ0D^0 - \bar D^0 Mixing in the Presence of Isosinglet Quarks

    Full text link
    We analyse ΔC=2\Delta C=2 transitions in the framework of a minimal extension of the Standard Model where either a Q=2/3Q=2/3 or a Q=−1/3Q=-1/3 isosinglet quark is added to the standard quark spectrum. In the case of a Q=2/3Q=2/3 isosinglet quark, it is shown that there is a significant region of parameter space where D0−Dˉ0D^0 - \bar D^0 mixing is sufficiently enhanced to be observed at the next round of experiments. On the contrary, in the case of a Q=−1/3Q=-1/3 isosinglet quark, it is pointed out that obtaining a substancial enhancement of D0−Dˉ0D^0 - \bar D^0 mixing, while complying with the experimental constraints on rare kaon decays, requires a contrived choice of parameters.Comment: 10 pages plus four figures. The figures are not included but are available upon reques

    Aspects of Soft and Spontaneous CP Violation

    Get PDF
    We study four different models for CP violation: the standard (KM) model, the aspon model of spontaneous breaking and two models of soft breaking. In all except the standard model, the strong CP problem is addressed and solved. Testable predictions for the area of the unitarity triangle and for (epsilon'/epsilon)_K are emphasized. The issue of CP violation may well become the first place where the standard model of particle theory is shown definitively to be deficient. There are two reasons for expecting this to happen: (1) the strong CP problem is still not understood in the unadorned standard model and (2) the KM mechanism, although unquestionably present, may not provide the full explanation of epsilon_K and (epsilon'/epsilon)_K.Comment: 24 pages LaTeX including 4 figures. Minor modification to analysis of lower bound for d_n, summarized in new Table I

    New Physics and Evidence for a Complex CKM

    Get PDF
    We carefully analyse the present experimental evidence for a complex CKM matrix, even allowing for New Physics contributions to Ï”K\epsilon_{K}, aJ/ΚKSa_{J/\Psi K_S}, ΔMBd\Delta M_{B_{d}}, ΔMBs\Delta M_{B_{s}}, and the ΔI=1/2\Delta I=1/2 piece of B→ρρB\to\rho\rho and B→ρπB\to\rho\pi. We emphasize the crucial r\^ ole played by the angle Îł\gamma in both providing irrefutable evidence for a complex CKM matrix and placing constraints on the size of NP contributions. It is shown that even if one allows for New Physics a real CKM matrix is excluded at a 99.92% C.L., and the probability for the phase Îł\gamma to be in the interval [−170∘;−10∘]âˆȘ[10∘;170∘][-170^\circ;-10^\circ]\cup [10^\circ;170^\circ] is 99.7%.Comment: 24 pages, 15 figures. Revised version, analyses extended to more general New Physics; C.L. of exclusion of a real CKM matrix include

    Minimal Flavour Violation and Multi-Higgs Models

    Get PDF
    We propose an extension of the hypothesis of Minimal Flavour Violation (MFV) to general multi-Higgs Models without the assumption of Natural Flavour Conservation in the Higgs sector. We study in detail under what conditions the neutral Higgs couplings are only functions of VCKMV_{CKM} and propose a MFV expansion for the neutral Higgs couplings to fermions.Comment: 16 pages, no figures. References adde

    Theory and phenomenology of two-Higgs-doublet models

    Get PDF
    We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either specific ansatze for the Yukawa couplings or by the introduction of family symmetries. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and its renormalization-group improvement. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.Comment: v3: 180 pages, 506 references, new chapter 7 with recent LHC results; referee comments taken into account; submitted to Physics Report

    Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    SCOAP

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
    • 

    corecore