243 research outputs found

    Sum rules and dualities for generalized parton distributions: is there a holographic principle?

    Full text link
    To leading order approximation, the physical content of generalized parton distributions (GPDs) that is accessible in deep virtual electroproduction of photons or mesons is contained in their value on the cross-over trajectory. This trajectory separates the t-channel and s-channel dominated GPD regions. The underlying Lorentz covariance implies correspondence between these two regions through their relation to GPDs on the cross-over trajectory. This point of view leads to a family of GPD sum rules which are a quark analogue of finite energy sum rules and it guides us to a new phenomenological GPD concept. As an example, we discuss the constraints from the JLab/Hall A data on the dominant u-quark GPD H. The question arises whether GPDs are governed by some kind of holographic principle.Comment: 45 pages, 4 figures, Sect. 2 reorganized for clarity. Typos in Eq. (20) corrected. 4 new refs. Matches published versio

    Machine learning-based investigation of the association between CMEs and filaments

    Get PDF
    YesIn this work we study the association between eruptive filaments/prominences and coronal mass ejections (CMEs) using machine learning-based algorithms that analyse the solar data available between January 1996 and December 2001. The Support Vector Machine (SVM) learning algorithm is used for the purpose of knowledge extraction from the association results. The aim is to identify patterns of associations that can be represented using SVM learning rules for the subsequent use in near real-time and reliable CME prediction systems. Timing and location data in the NGDC filament catalogue and the SOHO/LASCO CME catalogue are processed to associate filaments with CMEs. In the previous studies which classified CMEs into gradual and impulsive CMEs, the associations were refined based on CME speed and acceleration. Then the associated pairs were refined manually to increase the accuracy of the training dataset. In the current study, a data- mining system has been created to process and associate filament and CME data, which are arranged in numerical training vectors. Then the data are fed to SVMs to extract the embedded knowledge and provide the learning rules that could have the potential, in the future, to provide automated predictions of CMEs. The features representing the event time (average of the start and end times), duration, type and extent of the filaments are extracted from all the associated and not-associated filaments and converted to a numerical format that is suitable for SVM use. Several validation and verification methods are used on the extracted dataset to determine if CMEs can be predicted solely and efficiently based on the associated filaments. More than 14000 experiments are carried out to optimise the SVM and determine the input features that provide the best performance

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Diagnostic management of acute pulmonary embolism: a prediction model based on a patient data meta-analysis

    Get PDF
    AimsRisk stratification is used for decisions regarding need for imaging in patients with clinically suspected acute pulmonary embolism (PE). The aim was to develop a clinical prediction model that provides an individualized, accurate probability estimate for the presence of acute PE in patients with suspected disease based on readily available clinical items and D-dimer concentrations.Methods and resultsAn individual patient data meta-analysis was performed based on sixteen cross-sectional or prospective studies with data from 28 305 adult patients with clinically suspected PE from various clinical settings, including primary care, emergency care, hospitalized and nursing home patients. A multilevel logistic regression model was built and validated including ten a priori defined objective candidate predictors to predict objectively confirmed PE at baseline or venous thromboembolism (VTE) during follow-up of 30 to 90 days. Multiple imputation was used for missing data. Backward elimination was performed with a P-value ConclusionThe present model provides an absolute, individualized probability of PE presence in a broad population of patients with suspected PE, with very good discrimination and calibration. Its clinical utility needs to be evaluated in a prospective management or impact study.Thrombosis and Hemostasi

    Materializing digital collecting: an extended view of digital materiality

    Get PDF
    If digital objects are abundant and ubiquitous, why should consumers pay for, much less collect them? The qualities of digital code present numerous challenges for collecting, yet digital collecting can and does occur. We explore the role of companies in constructing digital consumption objects that encourage and support collecting behaviours, identifying material configuration techniques that materialise these objects as elusive and authentic. Such techniques, we argue, may facilitate those pleasures of collecting otherwise absent in the digital realm. We extend theories of collecting by highlighting the role of objects and the companies that construct them in materialising digital collecting. More broadly, we extend theories of digital materiality by highlighting processes of digital material configuration that occur in the pre-objectification phase of materialisation, acknowledging the role of marketing and design in shaping the qualities exhibited by digital consumption objects and consequently related consumption behaviours and experiences

    Representation in the (Artificial) Immune System

    Get PDF
    Much of contemporary research in Artificial Immune Systems (AIS) has partitioned into either algorithmic machine learning and optimisation, or, modelling biologically plausible dynamical systems, with little overlap between. We propose that this dichotomy is somewhat to blame for the lack of significant advancement of the field in either direction and demonstrate how a simplistic interpretation of Perelson’s shape-space formalism may have largely contributed to this dichotomy. In this paper, we motivate and derive an alternative representational abstraction. To do so we consider the validity of shape-space from both the biological and machine learning perspectives. We then take steps towards formally integrating these perspectives into a coherent computational model of notions such as life-long learning, degeneracy, constructive representations and contextual recognition—rhetoric that has long inspired work in AIS, while remaining largely devoid of operational definition

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Combination of searches for Higgs boson pairs in pp collisions at \sqrts = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a combination of searches for Higgs boson pair production using up to 36.1 fb(-1) of proton-proton collision data at a centre-of-mass energy root s = 13 TeV recorded with the ATLAS detector at the LHC. The combination is performed using six analyses searching for Higgs boson pairs decaying into the b (b) over barb (b) over bar, b (b) over barW(+)W(-), b (b) over bar tau(+)tau(-), W+W-W+W-, b (b) over bar gamma gamma and W+W-gamma gamma final states. Results are presented for non-resonant and resonant Higgs boson pair production modes. No statistically significant excess in data above the Standard Model predictions is found. The combined observed (expected) limit at 95% confidence level on the non-resonant Higgs boson pair production cross-section is 6.9 (10) times the predicted Standard Model cross-section. Limits are also set on the ratio (kappa(lambda)) of the Higgs boson self-coupling to its Standard Model value. This ratio is constrained at 95% confidence level in observation (expectation) to -5.0 &lt; kappa(lambda) &lt; 12.0 (-5.8 &lt; kappa(lambda) &lt; 12.0). In addition, limits are set on the production of narrow scalar resonances and spin-2 Kaluza-Klein Randall-Sundrum gravitons. Exclusion regions are also provided in the parameter space of the habemus Minimal Supersymmetric Standard Model and the Electroweak Singlet Model. For complete list of authors see http://dx.doi.org/10.1016/j.physletb.2019.135103</p
    corecore