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Abstract. In this work we study the association between eruptive 
filaments/prominences and coronal mass ejections (CMEs) using machine learning-
based algorithms that analyse the solar data available between January 1996 and 
December 2001. The Support Vector Machine (SVM) learning algorithm is used for 
the purpose of knowledge extraction from the association results. The aim is to 
identify patterns of associations that can be represented using SVM learning rules for 
the subsequent use in near real-time and reliable CME prediction systems. Timing and 
location data in the NGDC filament catalogue and the SOHO/LASCO CME catalogue 
are processed to associate filaments with CMEs. In the previous studies which 
classified CMEs into gradual and impulsive CMEs, the associations were refined 
based on the CME speed and acceleration. Then the associated pairs were refined 
manually to increase the accuracy of the training dataset. In the current study, a data- 
mining system has been created to process and associate  filament and CME data, 
which are arranged in numerical training vectors. Then the data are fed to SVMs to 
extract the embedded knowledge and provide the learning rules that could have the 
potential, in the future, to provide automated predictions of CMEs. The features 
representing the event time (average of the start and end times), duration, type and 
extent of the filaments are extracted from all the associated and not-associated 
filaments and converted to a numerical format that is suitable for SVM use. Several 
validation and verification methods are used on the extracted dataset to determine if 
CMEs can be predicted solely and efficiently based on the associated filaments. More 
than 14000 experiments are carried out to optimise the SVM and determine the input 
features that provide the best performance. 

1. Introduction 

Coronal mass ejections (CMEs) are one of the most spectacular solar events affecting 
human activities in space or ground-based communication systems. The Earth 
environment and geomagnetic activity are affected by an outward flow of ionized 
solar plasma known as the solar wind (Pick, Lathuillere, and Lilensten, 2001). 
Geomagnetic storms tend to be correlated with CMEs (Wilson and Hildner, 1984): 
Therefore, predicting CMEs can be useful in the forecasting of the conditions in the 
space environment (Webb, 2000). 
The first report of a CME in the astronomical literature was made in 1860 but no more 
appeared until the 1970’s (Briand, 2003). The assumption of a cause-and-effect 
relationship between CMEs and solar flares has driven heated arguments (Cliver and 
Hudson, 2002). The previous researches on CMEs (Munro et al., 1979); Poland et al., 
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1981); Yashiro et al,. 2005) showed that most CME events have associations with 
eruptive filaments/prominences and/or solar flares. The exact degree of this 
association is currently not clear and it is one of the long standing uncertainties in 
solar research because most of the available studies were carried out on only a few 
years of data or on limited cases. One of the aims of this work is to provide more 
insight into this uncertainty. It has been noted from the previous researches that some 
solar features lack clear definitions, which increases the difficulty of designing 
automated detection and processing systems. In addition, the recent space missions 
(Hinode and STEREO) are generating massive increases in the amount of solar data 
available, making the processing of this vast amount of data very challenging. 
Webb et al. (1998) reported a case study of the association between CMEs, magnetic 
clouds, and geomagnetic storms and concluded that CMEs are the real link between 
solar eruptions and space weather activities affecting the Earth. A summary of 
previous researches on the relationships between CMEs and other solar activities is 
given in Table 1. As it can be seen from Table 1, CMEs are mostly related to solar 
flares and eruptive filaments. Although some of the researchers (Moon et al., 2002; 
Qahwaji et al., (2008c) studied large datasets or data over long periods of time for 
correlations, most of the researches has been done on limited and concentrated data in 
order to draw accurate and meaningful conclusions (Gilbert et al., 2000; Subramanian 
and Dere, 2001). In any case, although different degrees of correlations were 
concluded by the researchers, they wereare mainly focused on the relationship among 
CMEs, filaments, and solar flaresrelationship between CMEs and filaments and solar 
flares. Some researchers concentrated their analysis on the Solar Maximum Mission 
(SMM) data to draw some conclusions about the solar-cycle dependence of the 
relation between filament eruptions and CMEs. Webb and Hundhausen (1987) studied 
58 CMEs observed in 1980 using the HAO Coronagraph/ Polarimeter on the SMM 
satellite and compared them with other forms of solar activity (eruptive prominences, 
H-Hα flares, soft X-ray events, and metric type II and IV radio bursts). It was found 
that 66% of the CMEs were associated with these solar activities. Out of these CMEs, 
68% were found to be associated with eruptive prominences, 37% were associated 
with H-Hα flares, 76% were associated with X-ray events, and 32% were associated 
with radio type II or IV events. Another study of SMM data for 73 CMEs between 
1984 and 1986 was reported in St. Cyr and Webb (1991). They found that 76% of the 
CMEs were associated with eruptive prominences, 26% were associated with H-Hα 
flares and 74% with X-ray events. Srivastava, Gonzalez, and Sawant (1997) studied 
14 CMEs observed between March and September 1980 using SMM and concluded 
that strong association existed between CMEs and coronal holes, eruptive 
prominences and current sheets. Hori and Culhane (2002) used microwave images 
from the Nobeyama Radioheliograph to examine 50 prominence eruptions near the 
solar maximum between 1999 and 2000 and concluded that 92% of the prominence 
eruptions were associated with CMEs. 
Currently, five major CME eruption models exist: the thermal blast model, the 
dynamo model, the mass loading model, the tether release model, and the tether 
straining model (Low, 1999b; Klimchuk, 2001; Low, 2001a; Low, 2001b). The last 
three are storage-and-release type models, where a slow build-up of magnetic stress 
occurs before an eruption begins (Aschwanden, 2004). The model which is most 
directly related to our present work is the mass loading model. The mass loading 
process during the pre-eruption phase of a CME can be manifested in the form of a 
growing quiescent or eruptive filament. Mass loading can be associated with 
prominences, which are extremely dense, contained in a compact volume, and of 
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chromospheric temperature. Prominences are thought to play a major role in CME 
eruptions because of their simultaneous appearance, according to  the observations 
reported by Low (1996, 1999a). A crucial criterion for the valid model of CME 
eruptions is the mass of the prominence and its role in the storage of magnetic energy 
(Low, Fong, and Fan, 2003, Zhang and Low, 2004). 
Machine learning and data mining have not been widely applied to solar data. For the 
references on these subjects, Qahwaji and Colak (2007) reported a comparison of 
several learning algorithms for the automated short-term prediction of solar flares.  
Qahwaji et al. (2008c) investigated all the reported flares and CMEs between 01 
January 1996 and 31 December 2004 (19164 solar flares and 9297 CMEs) and 
concluded that 17.4% of the reported solar flares are CME-associated on the basis of 
timing information. The authors compared the prediction performance using Cascade 
Correlation Neural Networks (CCNN) and Support Vector Machines (SVM). 
Al-Omari et al. (2008) and Qahwaji et al. (2008a, 2008b) reported large-scale studies 
looking for associations between CMEs and eruptive filaments/prominences based on 
their location and timing in the solar cycle . In Al-Omari et al. (2008) and Qahwaji et 
al. (2008a) approximately 16% of the filaments in the period from 1 January 1996 and 
31 December 2006 were associated with CMEs. The former paper used SVM to 
extract the knowledge contained in the associated datasets while the latter paper used 
Radial Basis Function (RBF) networks which are a powerful interpolation technique 
based on curve fitting that can be efficiently applied to multidimensional space. In 
RBF networks, learning is achieved when a multi-dimensional surface is found 
providing optimum separation of multi-dimensional training data. 
The Adaptive Boosting algorithm (AdaBoost), described in Freund and Schapire 
(1997), was used in Qahwaji et al. (2008b) for CME prediction. They compared three 
different boosting algorithms (Real, Gentle, and Modest AdaBoost). Real AdaBoost is 
the boosting algorithm reported in Schapire and Singer (1999), which is a 
generalisation of the basic AdaBoost algorithm introduced in Freund and Schapire 
(1996). Gentle AdaBoost, introduced in Friedman, Hastie, and Tibshirani (2000), is a 
more robust and stable version of the Real AdaBoost algorithm and performs slightly 
better than the latter on regular data and considerably better on noisy data (Friedman, 
Hastie, and Tibshirani, 2000). Modest AdaBoost, described in Vezhnevets and 
Vezhnevets (2005), can provide better generalization capability and higher resistance 
to over-fitting compared to the alternative forms of AdaBoost. In addition, Modest 
AdaBoost, in certain cases, can provide good performance in terms of test error. 
Our approach in this work is to use data mining and machine learning techniques, 
which have not been fully exploited before, to verify the associations between CMEs 
and filaments and to represent the associations using computer-based learning rules, 
which can then be used to extract knowledge and to provide off-line predictions. 
The current work introduces a computer platform for studying the association between 
CMEs and fFilaments within the context of CME predictions. The aims of this study 
are to: 

1. Investigate if a degree of association exists between erupting filaments and 
CMEs. 

2. Investigate if this association can be represented automatically using 
computerised learning rules. 

3. Provide a future work plan on how the outcomes of this study can be used as a 
part of more comprehensive work for the automated, near real-time prediction 
of CMEs. 



At the current phase of our research work, the word “prediction” is used as an 
allegorical expression for the use of computerised learning rules in finding the 
possibility that a filament will initiate a CME. The expression “prediction 
performance” is used as a measure of how correct is the rule’s decision that a CME 
will be initiated or not, compared with the actual CME records. 
This paper is organized as follows: Section 2 describes the data catalogues, the 
association principles and discusses different levels of associations. The creation of 
the training and testing datasets together with the practical implementation and 
evaluation of the system using machine learning algorithms are discussed in Section 
3. Concluding remarks and recommendations for future work are presented in Section 
4. 

2. Automated Analysis of Solar Data 

2.1. Description of the Data Catalogues 
Filament data from publicly available catalogues provided by the National 
Geophysical Data Centre (NGDC) 1  are used in this study. The NGDC filament 
catalogue holds records including dates, times, locations, physical properties, types, 
and active region numbers (NOAA) which have been supplied by many solar 
observatories around the world that have been tracking eruptive 
filaments/prominences. A sample of this catalogue is shown in Figure 1.a. 
It is important to note that the start and end times of each filament in the catalogue are 
followed by a qualifier with three levels: D (after), E (before) and U (uncertain). In 
the catalogue, filaments are classified in 15 types as shown in the first column of 
Table 2. The second column describes these types and the last column lists the 
numerical representation for each type, as explained in Section 3.2. Filament types in 
the catalogue are followed by an “importance” parameter that is based on the type and 
varies from 0- to 3+. The importance is given according to the greatest extension of 
the filament before activation, apparent length of surges, or the general activity level 
of a prominence region. The filament extent mentioned in Figure 1a. is given by the 
radial extent above the limb in hundredths of solar radius for limb events and it is 
given by the extent in whole degrees for disk events. 
Two main types of filaments/prominences were first introduced by the Menzel-Evans 
scheme of classification (Menzel and Evans, 1953): (1) filaments originating in the 
coronal space and (2) filaments originating in the chromosphere. Those originating 
from above in the coronal space consist of spot prominences (loops and funnels) and 
non-spot prominences (coronal rain, tree trunks, trees, hedgerows, suspended clouds, 
and mounds). On the other hand, prominences originating from below in the 
chromosphere include surges and puffs (spot prominences) and spicules (non-spot 
prominences). Detailed definitions for the filament types listed in Table 2 can be 
found in the glossaries provided by the Space Weather Prediction Centre (NOAA)2 
and the Space Environment Information System (SPENVIS)3. 
The data contained in the CME catalogue includes all CMEs manually identified since 
1996 in the images from the Large Angle and Spectrometric Coronagraph (LASCO) 
on board the Solar and Heliospheric Observatory (SOHO)4, generated and maintained 
by the Centre for Solar Physics and Space Weather at the Catholic University of 
                                                 
1 ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_FILAMENTS/, last access: 2008. 
2 http://www.swpc.noaa.gov/info/glossary.html, last access: 2009. 
3 http://www.spenvis.oma.be/spenvis/help/system/glossary.html, last access: 2009. 
4 http://cdaw.gsfc.nasa.gov/CME_list/, last access: 2008. 
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America. This catalogue of SOHO data has been constructed in cooperation with the 
Naval Research Laboratory and the Solar Data Analysis Centre (SDAC) at NASA 
Goddard Space Flight Centre. This CME catalogue provides details of CME 
appearances, dates and times, position angles, angular widths, speeds and 
accelerations as illustrated in Figure 1b. 
2.2. Associations 
Data from the NGDC and SOHO/LASCO catalogues are analyzed by a C++ computer 
platform created to automatically associate CMEs with eruptive 
filaments/prominences. In this work, the ‘associations’ are defined as the learning 
rules that can be used in the future as part of an automated system for CME 
predictions.  
The system starts by parsing the CME and filament catalogues. Then a filament is 
labelled either “A”, for associated, “PA” for possibly-associated filament, or “NA” for 
not-associated. Datasets for the NA and A filaments are created for the extraction of 
their properties, which are represented using a numerical format that is suitable for the 
input to the machine learning algorithms. The PA filaments are excluded from the 
machine training to make the learning performance as accurate as possible. 
The associations are determined as discussed in the following four steps: 

1. Time-based associations. The date and time of every CME are compared with 
the date and time of every filament (Al-Omari et al., 2008; Qahwaji et al., 
2008a). The association labelling starts with the time-based associations. The 
CME event time is taken directly from the SOHO/LASCO CME catalogue. 
However, as most of the filament start and end times are reported in the 
NGDC filaments catalogue as uncertain, the average of the filament start and 
end times is taken to be the filament event time (Moon et al., 2002). As 
indicated in Figure 2, the width of the time association window is defined to 
be 2α minutes. If a CME is not recorded in the interval from α minutes before 
to α minutes after the filament event time, the filament is labelled NA; 
otherwise, it is labelled PA and recorded together with the relevant CMEs. To 
make the data sampling as homogeneous as possible, the value of α was the 
same in all our experiments and chosen to be 60 minutes, following Moon et 
al. (2002).  

2. Location-based associations. The central position angle (CPA) of every CME 
is compared with the polar position of the centroid of every filament (Al-
Omari et al., 2008; Qahwaji et al., 2008a). In this step, the algorithm analyses 
the PA filaments, identified by step 1, and the corresponding CME candidates. 
The algorithm defines an association sector on the solar disk within ±30º of 
the centroid of each PA filament as shown in Figure 3. If any of the CME 
candidates of a PA filament has a CPA lying within a filament’s association 
sector, the filament is given the label A and recorded together with its 
associated CME. In the cases where the candidates are halo CMEs, the 
measurement position angle (MPA) is used instead because there is no CPA 
for a halo CME. According to Yashiro et al. (2004) and Gopalswamy et al. 
(2009), MPA is defined for the CME’s leading edge as the position angle at 
which the height-time information is measured for its fastest moving part. 
Apart from CMEs that have a non-radial movement, the CPA and MPA are 
equal (Gopalswamy et al., 2009). So, MPA can be used as an indicator of the 
CPA.  



3. Refining associations based on a CME’s speed and acceleration. According to 
Sheeley et al. (1999), CMEs can be classified into two classes: gradual and 
impulsive. The gradual CMEs are accelerating, with speeds ranging between 
400 to 600 km s-1 and are associated with eruptive activities. The impulsive 
CMEs are decelerating, with speeds faster than 750 km s-1 and are initiated by 
solar flares. It is reported in Moon et al. (2002) that the median acceleration 
and speed for CMEs associated with significant flares (M and X classes) are -
8m s-² and 636m s-1, respectively. Such CMEs can be assumed to be impulsive 
CMEs. By examining the distributions of acceleration and speed of filament-
associated CMEs in steps 1 and 2, it is found that these CMEs have zero 
median acceleration and a median speed of 417.5km s-1 as shown in Figure 4. 
As our algorithm associates CMEs with eruptive filaments/prominences, it is 
dealing with gradual CMEs (Sheeley et al., 1999). We therefore decided to 
apply strict association conditions that could lead to more accurate knowledge 
extraction with better machine learning performance. By making a simple 
comparison between the statistics of gradual and impulsive CMEs in our 
sample of data and those of Moon et al. (2002), it is clear that all CMEs that 
have accelerations less than -8m/s² and speeds greater than 636km s-1 are more 
likely to be associated with significant solar flares. Hence, we refined our 
associations by ignoring any A filament with associated CME having 
acceleration less than -8m s-² or speed greater than 636km s-1. 

4. Manual refinement. By examining the association algorithm from the previous 
three steps, it is apparent that the number of associated filaments might be 
greater than the number of associated CMEs which means that a single CME 
could have been associated with more than one filaments. One should also 
consider the possibility of the data sets including single filaments that are each 
associated with more than one CMEs. These cases have been dealt with in the 
following way: 

• If a filament has more than one CME candidates then the algorithm 
will associate it with the closest CME in time and discard the rest. 

• If the same CME is associated with many filaments then the case is 
investigated manually using H-Hα solar images that are obtained from 
Meudon Observatory5 and the Big Bear Solar Observatory (BBSO)6. 
We compare such filaments according to their distance from the limb, 
angular distance from the CME, duration, and extent. It is assumed that 
the associated filament is likely to be the one furthest from the centre 
of the solar disk, nearest to the CME, with longest time duration or 
alternatively greatest spatial extent. 

An example of PA filamentd is given in Figure 5 with its relevant CME. The marked 
filament started the eruption started at 9:40 and disappeared at 10:15 on 19 July 2001 
(the calculated event time is 9:57:30). The CME was first recorded on the same day at 
10:30 (about 32 minutes after the filament event time) which falls within the filament 
time association window. The PA filament was centred at S20W59 (a polar angle of 
251º ) and the CME had a central position angle of 275º which falls within the 
filament association region. Hence, the filament is labeled as an A filament. This 
example is the case where the disappearing time of disappearing filaments was treated 
as the end time. 

                                                 
5 http://bass2000.obspm.fr, last access: 2008. 
6 http://www.bbso.njit.edu/pub/archive/, last access: 2008. 
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By applying step 1 of the association algorithm, a total of 6101 out of 7332 filaments 
were classified as NA filaments based on their timing information. A total of 1231 
filaments were classified as PA filaments with 866 CME candidates out of  5449 
events recorded in the CME catalogue. The PA cases were compared on the basis of 
their locations and only 465 filaments were re-classified as A filaments, together with 
330 CME events. Here, it is interesting to note that the association algorithm 
associated 6.1% of the reported CMEs in the period 1996 to 2001 with filaments. This 
result is comparable with that obtained by Moon et al. (2002) who reported that 4% of 
the CMEs in the period 1996 to 2000 were associated with filaments on the basis of 
time and location using the same time-window width of 2 hours. Zhou, Wang, and 
Cao (2003) reported that more than 94% of halo CMEs in the period from 1997 to 
2001 were associated with eruptive prominences/filaments, but it is impossible to 
compare this result with ours because these authors did not include all available 
CMEs in the period. Instead they only selected 197 front-side halo CMEs. 
After applying the conditions on the distribution of the speed and acceleration of 
CMEs, which is the third step of the algorithm, we have discarded a total of 121 CME 
events so that only 209 out of the 5449 CMEs (3.84%) are associated with a new set 
of 279 A filaments. Refining these association results manually, as described 
previously in step 4, resulted in the final classification from our association algorithm 
which is 209 A cases, 6101 NA cases, and 1022 PA cases. Here, it is important to 
mention that the final association dataset contains only 16 halo CMEs (7.7%), where 
the MPA is used to provide an indicator for CPA. 
The location-based association condition (a constant association sector width of 60º) 
could be unreliable when associating filaments with the CMEs have larger angular 
widths. For this reason, we checked our algorithm using a dynamic association sector 
such that the sector width is set to 60º for CMEs with an angular width <60º and it is 
set to the angular width of the CME under consideration for CMEs with a larger 
angular width. By applying the association algorithm again we got the same 
association results as the final classifications mentioned previously plus an extra 21 
associated CME events with an angular width >60º. Because of the large angular 
widths of these extra CMEs, they were associated with many filaments. For example, 
a partial halo CME was recorded on 19 Oct 1996 at 17:17 with an angular width of 
170º and CPA of 159º. This CME was associated with four filament records having 
the centroid coordinates at S08E47, S09E41, S28E90 and S19E55. After checking H-
Hα images it was found that these filaments have approximately the same angular 
distance of about 50º from the CPA of the CME and therefore it is hard to decide 
which filament is the relevant one. We prefer to exclude the extra 21 cases from the 
learning part of our study because we believe that having a small dataset of correctly 
associated CME-filament pairs is better than having a larger dataset that contains 
some incorrectly associated pairs. 

3. Practical Implementation and Results 

3.1. Training and Verification Methods 
The present study has used SVMs which have proven to be very effective learning 
algorithms in similar applications (Qahwaji and Colak, 2007; Qahwaji et al., 2008c). 
All the experiments were carried out using the “MySVM” software  (Rüping, 2000). 
The Anova-Kernel SVM has been used as it was found to outperform the NNs used 
for solar data processing as explained in Qahwaji and Colak (2007). The Anova 
kernel is defined by the sum of exponential functions in the x and y directions, 
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where the parameters d (the exponential degree) and γ control the shape of the kernel. 
Optimisation of the SVM performance was done by adjusting d, γ and the 
classification threshold. The classification threshold is simply the decision value at 
which the data can be classified into two classes. Therefore, SVM classification marks 
above this threshold would be associated with class 1 (which initiates a CME in our 
work) and the rest of the data would be associated with class 2 (which does not 
initiate a CME). 
The so-called Jack-knife technique is used to provide a correct statistical evaluation of 
the performance of a classifier when it is trained and tested on a relatively limited 
number of samples. The technique divides the total number of samples into two sets: a 
training set and a testing set. In practice, a random number generator is used to divide 
the samples into training and testing groups. For a finite number of samples, an error 
counting procedure can be used to estimate the performance of the learning 
algorithms (Fukunaga, 1990). We did not use the cross validation technique because 
there are many more negative instances (NA filaments) than positive instances (A 
filaments) in our sample of data and the samples were sorted according to the solar 
cycle timing information which increases the chance that a given subsample may not 
contain any CME-associated filaments as there are no significant solar activities 
during the solar minimum; consequently, this will reduce the classifier training 
performance. 
The following performance indicators are used: True Positive Rate (TPR), False 
Positive Rate (FPR), True Negative Rate (TNR), False Negative Rate (FNR), 
Accuracy, Specificity, Sensitivity, and Heidke skill score (HSS). Since the system is 
designed to predict if an eruptive filament is going to initiate a CME (positive) or not 
initiate a CME (negative), we define these indicators as f ollows: 
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where TP (true positives) is the total number of cases for which the system correctly 
predicts that a filament produces a CME and FN (false negatives) is the number of 
cases where the system predicts incorrectly that a filament does not produce a CME, 
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where FP (false positives) is the total number of cases for which the system predicts 
incorrectly that a filament produces a CME and TN (true negatives) is the number of 
cases where the system predicts correctly that a filament does not produce a CME, 
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where the summation TP+FP+TN+FN is the total number of A and NA filaments 
found in our experiments. 
Specificity is an indicator of a system’s ability to correctly identify negatives. From 
Equation (3) and the definition of TN, Specificity = 1−FPR = TNR. Sensitivity, on the 
other hand, is an indicator of a system’s ability to correctly identify positives and can 
be defined as the ratio of the number of true positives to the sum of true positives and 
false negatives or in other words, Sensitivity = TPR. 
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The Heidke skill score is reported in Heidke (1926) and Balch (2008) and defined as  
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where E is the number of correct predictions which would be made by chance and is 
calculated as 
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Here HSS ranges from -1 (which means all incorrect prediction) to +1 (which means 
all correct prediction). If a prediction system has zero HSS, then the system 
performance is no better than that from random guessing (Balch, 2008). 
All of these indicators were calculated when testing the prediction system while using 
the learning rules which have been extracted from associations. The performance of 
the system was evaluated using Receiver Operating Characteristic (ROC) curves, as 
explained in Fawcett (2006). An ROC curve plots FPR on the x-axis and the 
corresponding TPR on the y-axis such that the diagonal line corresponds to random 
guessing (Fawcett, 2006). According to Fawcett (2006), the system with best 
performance is the one in the ROC curves which is furthest from the diagonal line in 
the upper-left direction. Mathematically, if we have different systems/configurations 
and each one is represented on an ROC curve by a point (FPR,TPR) then the 
system/configuration point with the maximum distance to the diagonal line, in the 
upper-left direction, has the best performance. The distance DROC from a point 
(FPRi,TPRi) to the diagonal line can be expressed as: 

2
TPRFPR
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−
=D . 

3.2. Data Handling 
Numerical representations were used for A and NA filaments as machine learning 
algorithms deal mainly with numbers. Properties such as starting time, ending time, 
type and spatial extent of the filaments can be extracted from the NGDC filament 
catalogue. Initially we also considered including other properties such as filament 
location, orientation, and importance. However, unfortunately the necessary data are 
not provided for a large proportion of the associated filaments and the only location 
indicator that is available for all filaments is the centroid location. For example, about 
63% (4606 out of 7332) of the filament records, for the period 1996-2001, are 
reported without importance. The lack of data made it impossible for us to use the 
importance for our experiments. Hence, we decided to use only the groups of 
properties shown in Table 3. 
The timing in Table 3 represents the Julian date of the filaments. As explained before, 
the event time for a filament was considered to be the average of the  start and end 
times. The Julian date was calculated and normalised to be in the range between 0.1 
and 0.9 for the time period to be spanned by the timing input. The distriburion of 
filaments according to the solar cycle phase is shown in Figure 6 for both A and NA 
filaments. The filament duration was calculated as the time difference in hours 
between the end and start times and then it was normalised between 0.1 and 0.9. The 
distributions of duration  for A and NA filaments are shown in Figure 7. As mentioned 
previously, the filament extent is measured in different ways for disk and limb events. 
Therefore, each input group having information on filament extent was divided into 
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two groups: one for disk events (4D, 3aD, 3bD and 2bD) and one for limb events (4L, 
3aL, 3bL and 2bL). Then, the filament extent was normalized in the range from 0.1 to 
0.9 for disk and limb events separately and its distribution is depicted in Figure 8. For 
the filament type parameter to have a meaningful numerical value it can be 
represented by its probability within the associated filaments and this probability can 
be calculated from the distribution of filament types of Figure 9. However, some types 
have almost equal numbers of associated filaments such as the DSD and APR events 
and other types are not associated with CMEs like the types CAP, CRN, MDP, and 
SSB. In such cases, it will be impossible for the SVM classifier to distinguish between 
different types of filaments because they are represented by values that are not 
separated enough for successful learning and output class separation. Hence, we have 
decided to represent the filament classes in numerical codes for our learning 
experiments as listed in Table 2. It is important to point out that these numerical 
values are no more than codes assigned to each class; they are neither weights nor 
represent the probability distribution of these classes. Finally, the target function for 
the input groups is represented by two values: 0.9 indicates  a filament initiating a 
CME and 0.1 indicates a filament  not initiating a CME. 
3.3. Validation Methods 
In the previous works (Al-Omari et al., 2008; Qahwaji et al., 2008a) it was found that 
group 3 and group 2a were the best input groups in the context of CME association 
and prediction. Nevertheless, we decided to carry out another extensive set of 
experiments attempting to increase the accuracy of our prediction system and to 
determine the significance of each property within this context. 
We created training datasets including 40% A filaments and 60% NA filaments. 
Training and testing experiments were carried out and the prediction performance was 
evaluated using the following two validation methods. 
3.3.1.Validation Method 1 
The machine learning/training and testing experiments in the first method were 
carried out with the aid of the Jack-knife technique (Fukunaga, 1990). This is done 
using 80% of randomly selected samples for training to find the best parameters and 
topologies for the learning algorithms and the remaining 20% for testing. As 
mentioned previously, our learning dataset contains 209 A filaments which represent 
40% of the dataset and we randomly selected another 313 NA filaments (60%) to 
build a complete dataset of 522 filaments. A total of 418 associated and not-associated 
filaments were used for training. This constituted 80% of the total number of cases. 
The remaining 104 associated and not-associated filaments were used for testing. The 
above numbers apply for all the input groups that have no information on filament 
extent (groups 3, 2 and 2a). Unfortunately, filament extent is not always reported in 
the NGDC catalogue so that we discarded the associated filaments having no 
information on their extent, from the training and testing datasets in groups 4D, 4L, 
3aD, 3aL, 3bD, 3bL, 2bD and 2bL. In these cases, the number of A filaments is 
reduced to 143 (117 for disk events and 26 for limb events), which means there are 
only 175 and 39 NA filaments for disk and limb events, respectively. Hence, for disk 
events (groups 4D, 3aD, 3bD and 2bD) we have a dataset of 292 associated and not-
associated filaments (234 for training and 58 for testing). And for limb events (groups 
4L, 3aL, 3bL and 2bL) we have a dataset of 65 associated and not-associated 
filaments (52 for training and 13 for testing). 



3.3.2.Validation Method 2 
In the second validation method, we tried to measure the ability of our system to 
constitute a near real-time automated CME prediction system. Therefore, we decided 
to validate our system on some arbitrary selected years of data without the need for 
random sampling of data using the Jack-knife technique. In this work we carried out 
extensive experiments using six years of data from 1996 to 2001.  Here we used the 
data from years 1996, 1997, 2000 and 2001 for training and the years 1998 and 1999 
for testing. We created a training dataset consisting of 149 A filaments and 223 NA 
filaments. The testing stage was more challenging because the testing dataset included 
all 1765 filaments reported in the NGDC catalogue for years 1998 and 1999. Again, 
because some filaments are reported without information on their spatial extent, the 
training and testing datasets were reduced while working with input groups 4, 3a, 3b 
and 2b. For training, a total of 265 filaments were used, consisting of 106 A and 159 
NA filaments. The number of filaments used for testing was reduced to 1504. 
3.4. Optimisation and Results 
For both validation methods, the performance of the Anova-Kernel SVM was 
optimised by adjusting the values of degree (d), γ, and classification threshold. In the 
optimisation process, the values of γ and d were both varied from 1 to 10 in steps of 1. 
In all experiments, the classifier threshold was initialized to the mean of the predicted 
scores. The optimisation process was applied to the input features corresponding to 
each of the seven groups shown in Table 3. 
3.4.1.Results for Method 1 
In the Jack-knife validation method, for each of 100 configurations and 11 input 
groups, ten experiments were carried out using the Jack-knife technique and the 
average TPR and FPR values recorded. Hence, 11000 experiments were carried out 
with 1100 SVM configurations, so 1100 average values of TPR and FPR were 
produced. To find the optimum SVM system (optimum d, γ and input configuration), 
the results were analysed using the ROC analysis technique and are plotted in Figure 
10. The system with best performance is the one in the ROC curves which is furthest 
from the diagonal line in the upper-left direction. The diagonal line corresponds to 
random guessing (Fawcett, 2006). The best performing SVM configurations can be 
seen in Figure 11, which is the magnified region labelled Z in Figure 10.  
In order to find the classification thresholds that provide the best prediction for the 
optimum SVM topologies, the threshold values were changed from 0 to 1 in steps of 
0.01 for every input feature set and their selected optimum topologies. Then for each 
threshold value, ten experiments were carried out using the Jack-knife technique and 
the averages for all performance indicators, defined previously, were calculated. The 
results of these experiments are summarized in Table 4 and depicted in the ROC 
curve of Figure 12. 
The optimum threshold values were found by choosing the threshold value with the 
system performance closest to the upper-left corner in the ROC curve. This is seen 
clearly in Figure 13, which shows a magnified view of the region labelled Z in Figure 
12. 
As can be seen by inspection of Figures 11 and 13, an SVM classifier that accepts 
three inputs (group 3) with d and γ values of 2 and 8 respectively and a classification 
threshold value of 0.57 provides the best prediction performance. From Table 4, this 
SVM configuration provides: 



• Average TPR and FPR values of 0.65 and 0.22, respectively, which are seen 
from inspection of Figure 14 to provide better CME prediction performance 
than that obtained in our previous work: Al-Omari et al. (2008) using SVM, 
Qahwaji et al. (2008a) using RBFs, Qahwaji et al. (2008b) using the Real and 
Modest AdaBoost, and Qahwaji et al. (2008c) using CCNN. It is clear from 
the ROC curve of Figure 14 that the best prediction performance using SVM 
in Qahwaji et al. (2008c) has a better TPR value than the current work as it 
provided TPR value of 0.73, but with a high FPR value of 0.53. On the other 
hand, a more conservative performance was provided by the Gentle AdaBoost 
presented in  Qahwaji et al. (2008b), with TPR and FPR values of 0.46 and 
0.12 respectively. The Gentle AdaBoost (Qahwaji et al., 2008b) is better used 
as a rejection classifier as it makes fewer false alarms. 

• An average accuracy of 73% which is the highest accuracy achieved so far in 
our research on predicting CMEs. 

• An average HSS of 0.43, which is significantly better than random guessing. 
This value indicates that our system has forecasting ability and we are 
confident that our system is not predicting by chance or because of the 
statistical distribution of the selected data sample. 

• A specificity (or TNR) of 78% which means a useful prediction performance 
if used as a rejection classifier to predict when CMEs are not likely to occur. 
We have achieved a specificity of 88% using the Gentle AdaBoost in Qahwaji 
et al. (2008b) but with a low TPR of 0.46. Therefore, with an accuracy of 73% 
and specificity of 78% it is seen that our current system will be efficient if 
used as either a positive or a negative classifier tool for the purpose of CME 
prediction. 

The next best performance is achieved by using two inputs (group 2a) with d, γ and 
threshold values of 10, 7 and 0.55, respectively. This SVM configuration provides 
TPR, FPR, specificity, accuracy, and HSS of 0.62, 0.24, 76%, 70% and 0.38, 
respectively. The use of input group 4D provided good results but with lower 
accuracy and HSS values of 64% and 0.33 respectively. 
These results support the findings in Al-Omari et al. (2008), Qahwaji et al. (2008a, 
2008b, 2008c) and it is clear that an increase in the prediction rate has been achieved 
with the use of more discriminative input features, such as filament type, for the input 
groups of Table 3. 
To draw an accurate conclusion on the importance of filament properties in CME 
prediction, the same dataset size must be used during validation. Therefore, further 
experiments were carried out using the same datasets used before for input groups 4D, 
4L, 3aD, 3aL, 3bD and 3bL except that the extent property was discarded from these 
datasets. For comparison purposes, the groups were relabelled as 4D′, 4L′, 3aD′, 3aL′, 
3bD′ and 3bL′. Validation method 1 was used and the optimum results of the 
experiments are summarized in Table 5. 
By comparing the values TPR, FPR, accuracy and HSS of groups 4D and 4L in Table 
4 with those of groups 4D′ and 4L′ in Table 5 it is clear that discarding the filament 
extent from the inputs enhanced the prediction performance by reducing its FPR and 
increasing its accuracy and HSS. By doing the same comparison between the 
optimum results of groups 3aD, 3aL, 3bD and 3bL in Table 4 and groups 3aD′, 3aL′, 
3bD′ and 3bL′ in Table 5 we can conclude that the filament type and duration, 
particularly the former, are more important indicators for CME prediction than the 
filament extent. This conclusion supports the findings of some researchers who 
reported high associations between CMEs and filaments as they considered selected 



filament types only. An example on this is the study reported in Pojoga and Huang 
(2003), where the authors considered three classes of sudden disappearances: 
eruptive, quasi-eruptive and vanishing (thermal disappearances) filaments. They 
found that 70% of the eruptive filaments were associated with CMEs, while the 
correlations were weaker for quasi-eruptive and vanishing filaments. Hence, the 
filament type could be a strong indicator for the possibility of initiating a CME. 
A physical explanation for our findings of a strong relationship between the filament 
types and CMEs can be concluded from the Menzel-Evans classification (Menzel and 
Evans, 1953) where a filament/prominence is classified based on its material motion 
(upward or downward), its association with sunspots, and its shape. From Figure 9 it 
is found that filaments with DSF, EPL and BSL types accounted for about 53.8% of 
the CME-associated filaments and these types of filaments  ascend from the Sun in 
their initial phase (Menzel and Jones, 1962). In addition, types like ASR (which rise 
above the limb) and BSD (which emanate from the chromosphere) accounted for 
12.9% of the CME-associated filaments. Hence, we conclude that filaments/ 
prominences that originate from the chromosphere (moving outward) are most likely 
to be associated with CMEs. On the other hand, it is reported that a loop prominence 
system (LPS) may appear as a flare in its initial phases (Jones, 1958) and the material 
in LPS prominences typically originates near the top of the loop and flows downward 
to the Sun. Our association algorithm managed to associate only 2 LPS prominences 
with CMEs which suggests that filaments originating in the coronal space (moving 
downward) are not likely to be associated with CMEs. 
Munro et al. (1979) studied the CME associations with several forms of solar activity 
in the period from May 1973 to February 1974. They found that 50% of the CMEs 
were associated with EPLs solely (without solar flares) and more than 70% were 
associated with events including EPLs, LPSs, DSFs, DSDs, BSDs and BSLs (with 
and without flares). In Gilbert et al. (2000), an eruptive prominence (EP) is defined as 
the prominence in which all or part of its material escapes the solar gravitational field. 
On the other hand, an active prominence (AP) is defined as the prominence showing 
motion in Hα images with no part of its material escaping the solar gravitational field. 
Other types of prominences such as sprays (SPY), surges (BSD, DSD, ASR, BSL), 
explosions, and coronal rain (CRN) were defined in Zirin (1966). Gilbert et al. (2000) 
studied 26 APs (including Zirin’s (1966) surges), 18 EPs and 10 DSFs and they found 
that 94% of the EPs, 46% of the APs and 70% of the DSFs were associated with 
CMEs. In their classification scheme, Zirin’s (1966) sprays and explosions were 
considered as either EPs or APs. Webb and Hundhausen (1987) studied the CME 
associations with all Hα eruptive events over the period from March to August 1980 
and found that 68% of the CMEs were associated with EPL, DSF, BSL and SPY 
events. These results support our findings depicted in Figure 9. 
All types of filaments/prominences occurring during solar cycle 18 (started in 1944 
and ended in 1954) were investigated by Menzel and Jones (1962) who found that 
filaments/prominences originating in the coronal space (moving downward) 
represented 93.1% of the recorded prominences. This explains the low associations 
between CMEs and filaments in our findings and supports our conclusion that the 
direction of the material motion (upward or downward) of filaments can be used as an 
indicator for its association with CMEs. 
3.4.2.Results for Method 2 
In the second validation method, a total of 100 experiments were carried out for each 
input group and the values of TPR and FPR were used to create the ROC curve shown 
in Figure 15 from which the optimum SVM configurations were found. To achieve 



the best performance of our prediction system we varied the value of the classifier 
threshold from 0 to 1 in steps of 0.01. The values of TPR and FPR for all thresholds 
and for all inputs groups were used to create the graph of Figure 16 and all the 
performance indicators were calculated and summarized in Table 6. 
From Figure 16 and Table 6 it is clear that the best performance was obtained while 
using group 3 with d, γ, and classification threshold values of 6, 2, and 0.64, 
respectively. This SVM configuration provides TPR, FPR, Specificity, Accuracy, and 
HSS values of 0.64, 0.18, 82%, 81% and 0.18, respectively. It is shown in Figure 14 
that the current work with validation method 2 has better performance compared to 
the first method using the Jack-knife technique. We believe that our system is the first 
to use SVM to predict if a CME is likely to be initiated with an accuracy of 81% and 
at the same time to predict when CMEs are not likely to occur with a specificity of 
82%. Again, the next best performance was obtained with group 2a with d, γ, and 
classification threshold values of 2, 1, and 0.72, respectively. This configuration 
provides TPR, FPR, specificity, accuracy and HSS of 0.62, 0.21, 79%, 78% and 0.15, 
respectively. Better TPR and HSS values of 0.71 and 0.30 were obtained with group 
3bL but with lower accuracy of 71%. 
From the results of both validation methods, it is clear that the CME prediction 
performance has been improved compared to our previous work. Checking some of 
the association cases manually (using H-Hα images) and considering the mass loading 
model for the CME initiation (conditions related to the distributions of the speed and 
acceleration of CMEs) enabled the association sets to be refined and hence eliminated 
some of the instances that might be false associations, which produced some 
improvement in the prediction performance. 

4. Conclusions and Future Research 

In this work, we have proposed a novel machine-learning-based system that has been 
trained and tested using six years of data in the NGDC filament catalogue and the 
SOHO LASCO CME catalogue. The system associates CMEs with filaments and 
represents these associations numerically in training vectors that are fed to SVM 
learning algorithms. An optimisation process was applied to the SVM before the 
learning process was started. The SVM learning algorithm was chosen because of its 
outstanding classification performance as reported in Qahwaji and Colak (2007) and 
Qahwaji et al. (2008c). 
To determine the optimum configuration for the SVM classification system used in 
this work, many experiments were carried out changing the parameter values  γ and 
degree (d). Different classification thresholds were tested to determine the optimum 
configuration using the ROC curves. These experiments used several validation 
techniques, such as the Jack-knife technique, as described in Section 3.2. 
All the reported filaments and CMEs between 1 January 1996 and 31 December 2001 
have been investigated. From 5449 CMEs reported in this period, the association 
software has searched for CME candidates for 7332 eruptive filaments/prominences. 
For a CME to be associated with a filament it must pass all the following strict 
conditions: (1) the CME candidate must be initiated within a two-hour interval 
centred on the filament event time, (2) the time-associated CME must be located 
within ±30º of the filament’s centroid, (3) this CME must have an acceleration greater 
than -8m/s² and (4) it has a speed less than 636km s-1. Applying these conditions, the 
algorithm found 209 CMEs (3.84% of the total) to be associated with 279 filaments. 
The association results were refined manually to remove any repeated associations. 



After determining the optimum configurations for the SVM using the Jack-knife 
technique, the best CME prediction performance for the feature sets considered 
achieved average TPR, FPR, and TNR values of 0.65, 0.22, and 0.78, respectively. 
This is a good result as it corresponds to an average accuracy of 73% and a Heidke 
skill score of 0.43. Further training and validations were carried out by training the 
system on data from 1996, 1997, 2000 and 2001 and testing the performance on data 
from 1998 and 1999. For this data, the system achieved average TPR, FPR, TNR, and 
accuracy values of 0.64, 0.18, 0.82, and 81%, respectively.  
In other words, if we use the information from the observed filament (solar cycle 
time, duration, and type) as an input to our system, the system can predict if this 
filament is going to initiate a CME with a true positive prediction probability of 65%. 
At the same time, the system can predict if there will be no CME initiated by the input 
filament with a true negative prediction probability of up to 82%. Therefore, the 
whole system, when used for predicting CMEs, can achieve a correct prediction 
probability of 73%. 
It is found that an increase in the accuracy of association/prediction has been achieved 
with the use of more discriminative features such as the filament type. In the final 
association results, about 66.7% of the CME-associated filaments are found to be 
emanating from the chromosphere or moving outward. We conclude that 
filaments/prominences that originate from the chromosphere (moving outward) are 
most likely to be associated with CMEs, while filaments originating in the coronal 
space (moving downward) are not likely to be associated with CMEs. 
We believe that this work is important because for the first time the association 
between filaments and CMEs has been explored and verified using machine learning. 
This association has been represented using computerised learning rules. As discussed 
in Qahwaji et al. (2008c) this representation is an important step for creating 
automated and reliable prediction systems that can predict the extremes of space 
weather. For our system to be near real-time, the detection and classification system 
for the filaments, mentioned in Figure 17, is needed and it is going to be part of our 
future work. However our work is far from complete and the prediction performance 
is not as high as it should be because of the following circumstances that still need to 
be addressed:  

• A large number of filaments are missing from the NGDC filament catalogue. 
This has been deduced by comparing the data in the filament catalogue with 
the synoptic maps produced by the Meudon Observatory, which are available 
publicly at http://bass2000.obspm.fr. The number of filaments reported in the 
catalogue for years 1996, 1997, 1998, 1999, 2000 and 2001 are 1989, 2506, 
1320, 446, 593 and 479, respectively. It is clear that there are many data 
discrepancies including missing and repeated features. This problem clearly 
affected our findings as the lost data in years 2000 and 2001 will bias our 
learning-rule-based SVM system to predict incorrectly that filaments within 
this period are more likely not to initiate CMEs. 

• CMEs can be associated with erupting filaments/prominences and solar flares. 
However, in this study, only CME associations with filaments were considered 
and solar flare associations produced in the previous work (Qahwaji et al., 
2008c) are not considered. To enhance the CME prediction accuracy it is 
necessary to combine both association algorithms. This will be investigated in 
the near future. 

• The current work does not distinguish between the front side and backside 
CMEs and it is possible for the present system to associate a filament with a 

http://bass2000.obspm.fr/


backside CME. For example, our association algorithm has managed to 
associate a CME-filament pair on 30 June 1999 where the CME event was 
recorded at 13:31 and the filament was first observed at 12:55. However, it is 
reported in the preliminary list7 of CME events, which is generated by the 
LASCO team, that this CME event is a partial halo backside event. The 
association algorithms have used most of the data reported in the catalogues 
without the use of solar images. There is only a small difference in the 
visibility of front side and backside CMEs, so it is very hard to distinguish 
them using only coronagraph observations (Yashiro et al., 2006). It would be 
desirable to confirm that a CME originates from the front side by checking the 
images of the lower corona obtained by the Soft X-ray Telescope (SXT) on 
Yohkoh and the Extreme ultraviolet Imaging Telescope (EIT) on SOHO. This 
will be investigated in future work. 
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Figure 1 (a) NGDC filament catalogue, (b) SOHO/LASCO CME catalogue. 
Figure 2 Time-based association between a CME and a filament. 
Figure 3 Location-based association between a CME and a filament. 
Figure 4 Distributions of speed and acceleration for filament-associated CMEs. 
Figure 5 An example of CME-filament association. 
Figure 6 Solar-cycle timing distributions for CME-associated and not-associated 
filaments. 
Figure 7 Duration distributions for CME-associated and not-associated filaments. 
Figure 8 Extent distributions for CME-associated and not-associated filaments. 
Figure 9 Type distributions for CME-associated and not-associated filaments. 



Figure 10 ROC graph showing different SVM topologies with various d and γ values 
for validation method 1. 
Figure 11 Magnified view of region Z in Figure 10: ROC graph showing the optimum 
SVM topologies with various d and γ values for validation method 1. The values (d, γ)  
for the optimum topologies are: A(5,8), B(3,6), C(2,8), D(1,1), E(3,10), F(1, 9), G(1, 
5), H(7, 8), I(10,7), J(10, 3), K(2,2). 
Figure 12 ROC graph showing different SVM topologies with various threshold 
values for validation method 1. 
Figure 13 Magnified view of region Z in Figure 12: ROC graph showing the best 
SVM topologies with various threshold values for validation method 1. The threshold 
values for the optimum topologies are: A(0.52), B(0.56), C(0.57), D(0.67), E(0.56), 
F(0.48), G(0.59), H(0.55), I(0.55), J(0.57), K(0.64). 
Figure 14 Comparison among the prediction performances of the current work and all 
our previous researches on CME prediction. (A) current work, method 1,  (B) current 
work, method 2, (C) Qahwaji et al. (2008a), (D) Real and Modest AdaBoost in 
Qahwaji et al. (2008b), (E) Gentle AdaBoost in Qahwaji et al. (2008b), (F) SVM in 
Qahwaji et al. (2008c), (G) CCNN in Qahwaji et al. (2008c), (H) Al-Omari et al. 
(2008). 
Figure 15 ROC graph showing the optimum SVM topologies with various d and γ 
values for validation method 2. The values (d, γ)  for the optimum topologies are: 
A(3,9), B(3,2), C(6,2), D(8,1), E(6,4), F(2,3), G(1,1), H(3,6), I(2,1), J(7,3), K(5,8). 
Figure 16 ROC graph showing the best SVM topologies with various threshold values 
for validation method 2. The threshold values for the optimum topologies are: 
A(0.58), B(0.44), C(0.64), D(0.50), E(0.47), F(0.48), G(0.44), H(0.56), I(0.72), 
J(0.44), K(0.47). 
Figure 17 A hybrid computer system for CME prediction. 
 

Table 1 Summary of previous research on the associations between CMEs and other solar 
activities.  

Reference Data Period Results related to our work 

Munro et al. 
(1979) 

75 major Skylab CMEs 
associated with the solar activity 

reported at SGD. 

1973 to 
1974 

40% of the CMEs were associated with 
flares, and 50% of the CMEs were 

associated with eruptive prominences. 

Poland et al. 
(1981) 

CMEs were observed from the 
NRL’s white light coronagraph 

(Solwind). 

1971 to 
1974 

50% of the CMEs were associated with 
flares or eruptive prominences. 

Webb and 
Hundhausen 

(1987) 

58 CMEs observed using the 
HAO Coronagraph/Polarimeter 

on the SMM satellite. 
1980 

68% of the CMEs were associated with 
eruptive prominences and 37% were 

associated with H-Hα flares. 

St. Cyr and 
Webb (1991) 73 CMEs, SMM data. 1984 to 

1986 

76% of the CMEs were associated with 
eruptive prominences, 26% were 

associated with H-Hα flares. 

St. Cyr et al. 
(1999) 

141 CMEs observed using the 
MK3 K coronameter at MLSO. 

1980 to 
1989 

55% of the CMEs were associated with 
active regions and 82% were associated 

with eruptive prominences. 

Gilbert et al. 
(2000) 

54 H-Hα observations obtained 
from the MLSO. 

Feb 1996 to 
Jun 1998 

94% of the eruptive prominences and 
46% of the active prominences were 

associated with CMEs. 
Subramanian 

and Dere 
32 CMEs compared with MDI 

and H-Hα images. 
Jan 1996 to 
May 1998 

CME associations: 41% with active 
regions without prominence eruptions, 



(2001) 44% with eruptive prominences 
embedded in active regions, and 15% 
with eruptive prominences that took 

place outside active regions. 

Hori and 
Culhane (2002) 

50 prominence eruptions near 
the SM observed using 

microwave images from the 
Nobeyama Radioheliograph. 

1999 to 
2000 

92% of the prominence eruptions were 
associated with CMEs. 

Moon et al. 
(2002) 

3217 CME events observed 
using SOHO/LASCO. 

1996 to 
2000 

4% of the CMEs were associated with 
filaments. 

Yang and 
Wang (2002) 

431 filaments compiled from 
BBSO H-Hα images. 

Jan 1997 to 
Jun 1999 

30% of the filament disappearances 
were associated with CMEs. 

Gopalswamy et 
al. (2003) 

186 prominence eruptions 
observed using microwave 
images from the Nobeyama 

Radioheliograph. 

Jan 1996 to 
Dec 2001 

2% of the prominence eruptions were 
associated with CMEs. 

Jing, Yang, and 
Wang (2003) 

79 filaments observed using H-
Hα or EIT/LASCO. 

1999 to 
2002 

63% of the filaments were associated 
with CMEs. 

Pojoga and 
Huang (2003) 

47 out of 426 disappearing 
filaments were identified as 

eruptive filaments. 

Jan to Apr 
2000 

70% of the eruptive filaments were 
associated with CMEs. 

Zhou, Wang, 
and Cao (2003) 

197 front-side halo CMEs 
observed using SOHO/LASCO. 

1997 to 
2001 

88% of the CMEs were associated with 
flares and 94% were associated with 

eruptive filaments. 

Jing et al. 
(2004) 

106 filament eruptions detected 
using H-Hα images from 

BBSO. 

1999 to 
2003 

56% of the filament eruptions were 
associated with CMEs. 

Jing (2005) 98 major filament eruption 
events. 

Jan 1999 to 
Dec 2003 

56% of the filaments were associated 
with CMEs. 

Al-Omari et al. 
(2008) and 

Qahwaji et al. 
(2008a) 

All data in SOHO/LASCO 
CMEs catalogue and NGDC 

filaments catalogue. 

Jan 1996 to 
Dec 2006 

16% of the filaments were associated 
with CMEs. 

Qahwaji et al. 
(2008c) 

19164 solar flares and 9297 
CMEs. 

Jan 1996 to 
Dec 2004 

17.4% of the reported solar flares are 
CME-associated. 

 
Table 2 Filament types. 

Type Description Numerical value 
SSB 
MDP 
CRN 
CAP 
LPS 
SPY 
BSD 
APR 
DSD 
ADF 
ASR 
AFS 
BSL 
EPL 
DSF 

Solar sector boundary 
Mound prominence 

Coronal rain 
Cap prominence 

Loops 
Spray 

Bright surge on disk 
Active prominence 
Dark surge on disk 

Active dark filament 
Active surge region 

Arch filament system 
Bright surge on limb 

Eruptive prominence on limb 
Disappearing filament 

0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.70 
0.75 
0.85 
0.90 

 
Table 3 Groups of properties that are used as input nodes in the SVM learning algorithm. 

Group Inputs 



4D 
4L 
3 

3aD 
3aL 
3bD 
3bL 

2 
2a 

2bD 
2bL 

Timing, duration, type, extentDisk 
Timing, duration, type, extentLimb 
Timing, duration, type 
Timing, duration, extentDisk 
Timing, duration, extentLimb 
Timing, type, extentDisk 
Timing, type, extentLimb 
Timing, duration 
Timing, type 
Timing, extentDisk 
Timing, extentLimb 

 
Table 4 Averages of performance indicators (Jack-knife technique). 

Group d γ TPR FPR FNR TNR Accuracy Specificity Sensitivity HSS DROC Threshold 
4D 5 8 0.85 0.47 0.16 0.53 0.64 0.53 0.85 0.33 0.266 0.52 
4L 3 6 0.76 0.53 0.24 0.47 0.53 0.47 0.76 0.21 0.158 0.56 
3 2 8 0.65 0.22 0.35 0.78 0.73 0.78 0.65 0.43 0.304 0.57 

3aD 1 1 0.37 0.14 0.63 0.86 0.65 0.86 0.37 0.25 0.167 0.67 
3aL 3 10 0.75 0.50 0.25 0.50 0.55 0.50 0.75 0.20 0.177 0.56 
3bD 1 9 0.61 0.30 0.39 0.70 0.66 0.70 0.61 0.30 0.216 0.48 
3bL 1 5 0.59 0.34 0.42 0.66 0.63 0.66 0.59 0.23 0.173 0.59 

2 7 8 0.67 0.36 0.33 0.64 0.65 0.64 0.67 0.30 0.219 0.55 
2a 10 7 0.62 0.24 0.38 0.76 0.70 0.76 0.62 0.38 0.269 0.55 

2bD 10 3 0.46 0.24 0.54 0.76 0.64 0.76 0.46 0.23 0.157 0.57 
2bL 2 2 0.32 0.18 0.68 0.82 0.54 0.82 0.32 0.13 0.103 0.64 

 
Table 5 Averages of performance indicators (discarding the extent from inputs). 

Group d γ TPR FPR FNR TNR Accuracy Specificity Sensitivity HSS DROC Threshold 
4D′ 6 1 0.63 0.24 0.37 0.77 0.71 0.77 0.63 0.39 0.276 0.51 
4L′ 5 1 0.68 0.41 0.32 0.59 0.58 0.59 0.68 0.25 0.192 0.55 

3aD′ 1 5 0.45 0.17 0.55 0.83 0.67 0.83 0.45 0.29 0.198 0.49 
3aL′ 5 1 0.66 0.41 0.34 0.59 0.58 0.59 0.66 0.23 0.180 0.52 
3bD′ 1 2 0.60 0.28 0.40 0.72 0.67 0.72 0.60 0.32 0.228 0.55 
3bL′ 2 2 0.77 0.42 0.23 0.58 0.62 0.58 0.77 0.34 0.244 0.49 

 
 

Table 6 Averages of performance indicators (further validations). 
Group d γ TPR FPR FNR TNR Accuracy Specificity Sensitivity HSS DROC Threshold 

4D 3 9 0.32 0.19 0.68 0.81 0.79 0.81 0.32 0.09 0.032 0.58 
4L 3 2 0.71 0.36 0.29 0.64 0.64 0.64 0.71 0.25 0.094 0.44 
3 6 2 0.64 0.18 0.36 0.82 0.81 0.82 0.64 0.32 0.180 0.64 

3aD 1 2 0.12 0.02 0.88 0.98 0.96 0.98 0.12 0.07 0.105 0.66 
3aL 6 4 0.29 0.11 0.71 0.90 0.86 0.90 0.29 0.13 0.120 0.47 
3bD 2 3 0.53 0.37 0.47 0.63 0.62 0.63 0.53 0.11 0.021 0.48 
3bL 1 1 0.71 0.29 0.29 0.71 0.71 0.71 0.71 0.30 0.136 0.44 

2 3 6 0.74 0.51 0.26 0.49 0.53 0.49 0.74 0.17 0.042 0.56 
2a 2 1 0.62 0.21 0.38 0.79 0.78 0.79 0.62 0.29 0.150 0.72 

2bD 8 7 0.94 0.89 0.06 0.11 0.13 0.11 0.94 0.03 0.003 0.47 
2bL 5 8 0.36 0.14 0.64 0.86 0.83 0.86 0.36 0.15 0.116 0.47 

 


	1. Introduction
	2. Automated Analysis of Solar Data
	2.1. Description of the Data Catalogues
	2.2. Associations

	3. Practical Implementation and Results
	3.1. Training and Verification Methods
	3.2. Data Handling
	3.3. Validation Methods
	3.3.1. Validation Method 1
	3.3.2. Validation Method 2

	3.4. Optimisation and Results
	3.4.1. Results for Method 1
	3.4.2. Results for Method 2


	4. Conclusions and Future Research
	References

