561 research outputs found

    Vegetative growth response of beets and lettuce to stored human urine

    Get PDF
    ArticleIn this work, we present the experimental results of the effect of stored human urine (SHU) on the growth of beets (Beta vulgaris L) and lettuce (Lactuca sativaL). We apply different amounts of SHU according to the recommended dose of nitrogen, considering soil from farmland and vermiculite as substrates. The last allows us to determine with high precision the isolated effect of SHU over the vegetative development of beet plants, without considering other nutrients present in common soils. Experimental results demonstrate that the application of SHU has no significant effects on lettuce vegetative growth under our soil conditions. In contrast, SHU can be used successfully as a fertilizer of beets. The optimum dose was found at 120kgN ha-1and resulted in average dry weight of 125g. However, if the dose exceeds the optimum levels, the growth of the plant is inhibited. Beets fertilized with SHU does not pose any hygienic risk for human consumption. Our findings represent a promising alternative to propose expanding the use of SHU as fertilizer in medium-sized greenhouses and to provide benefits to families in rural areas, with little or no available water supplies

    Fuzzy Scalar Field Theory as a Multitrace Matrix Model

    Get PDF
    We develop an analytical approach to scalar field theory on the fuzzy sphere based on considering a perturbative expansion of the kinetic term. This expansion allows us to integrate out the angular degrees of freedom in the hermitian matrices encoding the scalar field. The remaining model depends only on the eigenvalues of the matrices and corresponds to a multitrace hermitian matrix model. Such a model can be solved by standard techniques as e.g. the saddle-point approximation. We evaluate the perturbative expansion up to second order and present the one-cut solution of the saddle-point approximation in the large N limit. We apply our approach to a model which has been proposed as an appropriate regularization of scalar field theory on the plane within the framework of fuzzy geometry.Comment: 1+25 pages, replaced with published version, minor improvement

    A parametric study on the dynamic response of planar multibody systems with multiple clearance joints

    Get PDF
    A general methodology for dynamic modeling and analysis of multibody systems with multiple clearance joints is presented and discussed in this paper. The joint components that constitute a real joint are modeled as colliding bodies, being their behavior influenced by geometric and physical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory together with a dissipative term, is used to evaluate the intra-joint contact forces. Furthermore, the incorporation of the friction phenomenon, based on the classical Coulomb’s friction law, is also discussed. The suitable contact-impact force models are embedded into the dynamics of multibody systems methodologies. An elementary mechanical system is used to demonstrate the accuracy and efficiency of the presented approach, and to discuss the main assumptions and procedures adopted. Different test scenarios are considered with the purpose of performing a parametric study for quantifying the influence of the clearance size, input crank speed and number of clearance joints on the dynamic response of multibody systems with multiple clearance joints. Additionally, the total computation time consumed in each simulation is evaluated in order to test the computational accuracy and efficiency of the presented approach. From the main results obtained in this study, it can be drawn that clearance size and the operating conditions play a crucial role in predicting accurately the dynamic responses of multibody systems.Fundação para a Ciência e a Tecnologia (FCT

    Process Oscillations in Continuous Ethanol Fermentation with Saccharomyces cerevisiae

    Get PDF
    Based on ethanol fermentation kinetics and bioreactor engineering theory, a system composed of a continuously stirred tank reactor (CSTR) and three tubular bioreactors in series was established for continuous very high gravity (VHG) ethanol fermentation with Saccharomyces cerevisiae. Sustainable oscillations of residual glucose, ethanol, and biomass characterized by long oscillation periods and large oscillation amplitudes were observed when a VHG medium containing 280 g/L glucose was fed into the CSTR at a dilution rate of 0.027 h1. Mechanistic analysis indicated that the oscillations are due to ethanol inhibition and the lag response of yeast cells to ethanol inhibition. A high gravity (HG) medium containing 200 g/L glucose and a low gravity (LG) medium containing 120 g/L glucose were fed into the CSTR at the same dilution rate as that for the VHG medium, so that the impact of residual glucose and ethanol concentrations on the oscillations could be studied. The oscillations were not significantly affected when the HG medium was used, and residual glucose decreased significantly, but ethanol maintained at the same level, indicating that residual glucose was not the main factor triggering the oscillations. However, the oscillations disappeared after the LG medium was fed and ethanol concentration decreased to 58.2 g/L. Furthermore, when the LG medium was supplemented with 30 g/L ethanol to achieve the same level of ethanol in the fermentation system as that achieved under the HG condition, the steady state observed for the original LG medium was interrupted, and the oscillations observed under the HG condition occurred. The steady state was gradually restored after the original LG medium replaced the modified one. These experimental results confirmed that ethanol, whether produced by yeast cells during fermentation or externally added into a fermentation system, can trigger oscillations once its concentration approaches to a criterion. The impact of dilution rate on oscillations was also studied. It was found that oscillations occurred at certain dilution rate ranges for the two yeast strains. Since ethanol production is tightly coupled with yeast cell growth, it was speculated that the impact of the dilution rate on the oscillations is due to the synchronization of the mother and daughter cell growth rhythms. The difference in the oscillation profiles exhibited by the two yeast strains is due to their difference in ethanol tolerance. For more practical conditions, the behavior of continuous ethanol fermentation was studied using a self-flocculating industrial yeast strain and corn flour hydrolysate medium in a simulated tanks-in-series fermentation system. Amplified oscillations observed at the dilution rate of 0.12 h1 were postulated to be due to the synchronization of the two yeast cell populations generated by the continuous inoculation from the seed tank upstream of the fermentation system, which was partly validated by oscillation attenuation after the seed tank was removed from the fermentation system. The two populations consisted of the newly inoculated yeast cells and the yeast cells already adapted to the fermentation environment. Oscillations increased residual sugar at the end of the fermentation, and correspondingly, decreased the ethanol yield, indicating the need for attenuation strategies. When the tubular bioreactors were packed with ½” Intalox ceramic saddles, not only was their ethanol fermentation performance improved, but effective oscillation attenuation was also achieved. The oscillation attenuation was postulated to be due to the alleviation of backmixing in the packed tubular bioreactors as well as the yeast cell immobilization role of the packing. The residence time distribution analysis indicated that the mixing performance of the packed tubular bioreactors was close to a CSTR model for both residual glucose and ethanol, and the assumed backmixing alleviation could not be achieved. The impact of yeast cell immobilization was further studied using several different packing materials. Improvement in ethanol fermentation performance as well as oscillation attenuation was achieved for the wood chips, as well as the Intalox ceramic saddles, but not for the porous polyurethane particles, nor the steel Raschig rings. Analysis for the immobilized yeast cells indicated that high viability was the mechanistic reason for the improvement of the ethanol fermentation performance as well as the attenuation of the oscillations. A dynamic model was developed by incorporating the lag response of yeast cells to ethanol inhibition into the pseudo-steady state kinetic model, and dynamic simulation was performed, with good results. This not only provides a basis for developing process intervention strategies to minimize oscillations, but also theoretically support the mechanistic hypothesis for the oscillations

    Evolution of the infrared luminosity density and star formation history up to z~1: preliminary results from MIPS

    Full text link
    Using deep observations of the Chandra Deep Field South obtained with MIPS at 24mic, we present our preliminary estimates on the evolution of the infrared (IR) luminosity density of the Universe from z=0 to z~1. We find that a pure density evolution of the IR luminosity function is clearly excluded by the data. The characteristic luminosity L_IR* evolves at least by (1+z)^3.5 with lookback time, but our monochromatic approach does not allow us to break the degeneracy between a pure evolution in luminosity or an evolution in both density and luminosity. Our results imply that IR luminous systems (L_IR > 10^11 L_sol) become the dominant population contributing to the comoving IR energy density beyond z~0.5-0.6. The uncertainties affecting our measurements are largely dominated by the poor constraints on the spectral energy distributions that are used to translate the observed 24mic flux into luminosities.Comment: 4 pages, 2 figures. To be published in "Starbursts: From 30 Doradus to Lyman Break Galaxies", held in Cambridge, 6-10 September 2004, Ed. R. de Grijs & R. M. Gonzalez Delgad

    Spatial rigid-multi-body systems with lubricated spherical clearance joints : modeling and simulation

    Get PDF
    The dynamic modeling and simulation of spatial rigid-multi-body systems with lubricated spherical joints is the main purpose of the present work. This issue is of paramount importance in the analysis and design of realistic multibody mechanical systems undergoing spatial motion. When the spherical clearance joint is modeled as dry contact; i.e., when there is no lubricant between the mechanical elements which constitute the joint, a body-to-body (typically metal-to-metal) contact takes place. The joint reaction forces in this case are evaluated through a Hertzian-based contact law. A hysteretic damping factor is included in the dry contact force model to account for the energy dissipation during the contact process. The presence of a fluid lubricant avoids the direct metal-to-metal contact. In this situation, the squeeze film action, due to the relative approaching motion between the mechanical joint elements, is considered utilizing the lubrication theory associated with the spherical bearings. In both cases, the intra-joint reaction forces are evaluated as functions of the geometrical, kinematical and physical characteristics of the spherical joint. These forces are then incorporated into a standard formulation of the system’s governing equations of motion as generalized external forces. A spatial four bar mechanism that includes a spherical clearance joint is considered here as example. The computational simulations are carried out with and without the fluid lubricant, and the results are compared with those obtained when the system is modeled with perfect joints only. From the general results it is observed that the system’s performance with lubricant effect presents fewer peaks in the kinematic and dynamic outputs, when compared with those from the dry contact joint model.Fundação para a Ciência e a Tecnologia (FCT

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Managerial judgment and forecast combination: An experimental study

    Full text link
    This paper examines the role of managerial judgment in forming a final forecast, or judging the achievability of a critical level of sales, when multiple forecasts or opinions are available to the decision maker. Several factors that can help improve the quality of human intervention are identified and incorporated in a decision aid. Experimental results show that aided combination can help the decision maker exploit her relevant private information and mitigate the generally observed negative effects of human intervention. Further, the results suggest that emphasizing expected sales, even when the organization is primarily interested in go/no-go decisions, helps improve performance. Several suggestions for future research are presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47133/1/11002_2004_Article_BF00993954.pd
    corecore