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Abstract 
 
A general methodology for dynamic modeling and analysis of multibody systems with multiple 

clearance joints is presented and discussed in this paper. The joint components that constitute a 

real joint are modeled as colliding bodies, being their behavior influenced by geometric and 

physical properties of the contacting surfaces. A continuous contact force model, based on the 

elastic Hertz theory together with a dissipative term, is used to evaluate the intra-joint contact 

forces. Furthermore, the incorporation of the friction phenomenon, based on the classical 

Coulomb’s friction law, is also discussed. The suitable contact-impact force models are 

embedded into the dynamics of multibody systems methodologies. An elementary mechanical 

system is used to demonstrate the accuracy and efficiency of the presented approach, and to 

discuss the main assumptions and procedures adopted. Different test scenarios are considered 

with the purpose of performing a parametric study for quantifying the influence of the clearance 

size, input crank speed and number of clearance joints on the dynamic response of multibody 

systems with multiple clearance joints. Additionally, the total computation time consumed in 

each simulation is evaluated in order to test the computational accuracy and efficiency of the 

presented approach. From the main results obtained in this study, it can be drawn that clearance 

size and the operating conditions play a crucial role in predicting accurately the dynamic 

responses of multibody systems.   
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1. Introduction 
 

Over the last few decades, the Computer-Aided of Mechanical Systems emerged as an 

important scientific part of the Applied Mechanics field, with important applications in several 

branches of engineering [1-5]. This has been made possible thanks to the impressive 

improvements of the computers at the level of both hardware and software, due to the creation of 

robust and accurate computational tools, and due to the demand for analysis of complex 

multibody mechanical systems. Decades ago, the design of machines and components was based 

on trial and error and knowledgeable craftsmanship. Later, algebraic methods for analysis 

eliminated part of the limitations of the trial and error and lead to documented methods used in 

the design of mechanical components [5, 6]. In today’s industry there is little room for error and 

a great need for optimized and cost effective production of components and machines with high 

reliability and durability. Still, all areas of research are to some point based on the construction 

of models and, therefore, on assumptions and approximations. The development of faster data 

processing capabilities allowed more accurate and detailed methodologies and techniques 

inspired to improve the already existing formulations. The analysis of complex multibody 

systems is an area where in the past few decades faster data processing has lead to an increased 

research effort. This includes kinematic and dynamic analysis, synthesis and optimization of the 

motion forces in multibody systems [3-6].  

All of the mechanical systems do not have perfect kinematic joints due to functional 

tolerances between the adjacent segments [7]. Either due to the loads carried by the mechanical 

devices or misalignments that are required for their operation, real joints must be lubricated [8] 

or include bushings [9], generally made with metals and polymers. By using rubber bushings a 

conventional mechanical joint is transformed into a joint with clearance allowing for the mobility 

of the over constrained system in which it is used [10]. Therefore, appropriate tribological 

models must be devised in the framework of their application in general multibody systems [11]. 

The characterization of the normal contact forces in the non lubricated joints is realized by using 

the continuous contact force model [12] while their tangential forces are obtained by using 

appropriate friction force models [13]. Joints with rubber bushings are usually described by the 

methodology suggested by Park and Nikravesh [10]. However, this is a linear model that does 

not include coupling between radial and axial or bending loading. A more advanced model for 

rubber bushings is realized by obtaining the static nonlinear response of the rubber bushings 

using finite elements and implementing the force-displacement curves as carpet plots in the 

computational code that supports the analysis [14]. 

The serious consequences of the clearance joints on the behavior of the multibody 

systems have motivated various theoretical and experimental investigations over the last three 
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decades [15-23]. Furthermore, mechanical systems with clearance joints can have a predictable 

nonlinear dynamic response [24-26]. This is an important feature for the design and control of 

these systems. Consequently, proper modeling of clearance joints in mechanical systems is 

required to achieve better understanding of the dynamic performance of the machines and 

mechanisms. This aspect gains paramount importance due to the demand for the proper design of 

the real joints in many industrial applications. The general purpose computational tools used for 

the design and analysis of multibody systems have a wide number of mechanical systems 

modeling features that require the description of rigid or flexible bodies for which geometry, 

mass, center of mass, moment of inertia, and other relevant properties are defined [27, 28]. The 

computational codes also provide a large library of kinematic joints that constrain relative 

degrees of freedom between connected bodies. The kinematic joints available in the commercial 

programs are represented as ideal joints, that is, there are no clearances or deformations in them. 

Thus, modeling the dynamics of multibody systems with clearances and imperfections is a 

challenging issue in mechanical design and much work still remains to be done to achieve 

satisfactory modeling tools. 

The primary objective of this work is to explore the mathematical modeling of real joints 

in the multibody systems. Furthermore, a parametric study of a planar mechanical system is 

performed in order to quantify the influence of the main parameters on the dynamic response of 

mechanical systems with multiple clearances joints. The selected parameters are the clearance 

size, the input crank speed, the number of joints modeled as clearance joints. During the 

numerical simulations the time of computation is evaluated in order to analyze the computational 

efficiency of the presented methodology. In general, the present research work is expected to be 

of great use in the analysis of multibody systems with clearance joints, namely in regard to the 

design and control tasks of such systems. 

In a broad sense, there are two main approaches to model multibody systems with 

contact-impact events, namely the regularized models [29] and non-smooth dynamics 

formulation [30]. The regularized approach is in fact a penalty method in which the contact 

forces and deformations are modeled by a set of spring-damper elements that represent the 

surface compliance of the contacting bodies [12]. This approach is quite simple, very 

straightforward to implement and presents also a good computational efficiency. In addition, in 

the regularized approach, there are no impulses at the instant of contact, therefore, there is no 

need for impulsive dynamics calculations and the contact loss can be easily determined from 

position and velocity data [31]. One of the disadvantages associated with this formulation is that 

it can introduce highly-frequency dynamics into the system, due to the presence of stiff springs 

in compliant surfaces. If these dynamics require the integration algorithm to take smaller steps, 

then the speed of simulation will be strongly penalized [32]. Another drawback of the 
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regularized approach is that the difficulty to chosen the contact parameters such as the equivalent 

stiffness or the degree of nonlinearity of the deformation, especially for complex contact 

scenarios [33]. An alternative way to treat the contact-impact problems in multibody systems is 

to use the non-smooth dynamics approach, namely the Linear Complementary Problem (LCP) 

[34, 35] and Differential Variational Inequality (DVI) [36, 37]. The complementarity 

formulations associated with the Moreau’s time-stepping algorithm for contact modeling in 

multibody systems have used by many researchers [38-40]. Assuming that the contacting bodies 

are truly rigid, as opposed to locally deformable or penetrable bodies as in the penalty 

approaches, the complementarity formulations resolve the contact dynamics problem by using 

the unilateral constraints to compute contact impulses or forces to prevent penetration from 

occurring. Thus, at the core of the complementarity approach is an explicit formulation of the 

unilateral constraints between the contacting rigid bodies [41]. The basic idea of 

complementarity in unilateral multibody systems can be stated as for a unilateral contact either 

relative kinematics is zero and the corresponding constraint forces are zero, or vice versa. The 

product of these two groups of quantities is always zero. This leads to a complementarity 

problem and constitutes a rule which allows the treatment of multibody systems with unilateral 

constraints [42-45]. One of the first published works on the complementarity problems is due to 

Signorini [46], who introduced an impenetrability condition in the form of a Linear 

Complementary Problem. Later, Moreau [47] and Panagiotopoulos [48] also applied the concept 

of complementarity to study nonsmooth dynamic systems. Pfeiffer and Glocker [34] extended 

the developments of Moreau and Panagiotopoulos to multibody dynamics with unilateral 

contacts, being the complementarity considered of paramount importance. Indeed, 

complementarity problems proved to be a very useful way to formulating problems involving 

discontinuities [49-52]. In turn, the DVI has been recognized to be a powerful tool to deal with 

multiple contact problems in multibody dynamics. This approach has the advantage that it does 

not need the use of small time steps as in the case of penalty approaches, which means that 

simpler integrator schemes can be used such as the Euler method [36]. However, the algorithmic 

procedures that results from DVI approach is of great complexity. This formalism has been used 

with success by Tasora et al. [37] to model and analyze multibody systems involving hundreds 

of thousand contacts. The DVI approaches are also interesting in the measure that they can easily 

deal with friction problems without need to modify Coulomb’s friction law. In short, the 

different methods to deal with contact-impact events in multibody systems have inherently 

advantages and disadvantages for each particular application. To the belief of author, none of the 

formulations briefly described above can a-priori be said to be superior compared to other for all 

applications. It is a fact that a specific multibody problem might be easier to describe by one 

formulation, but this does not yield a general predominance of this formulation in all situations. 
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2. Modeling revolute clearance joints 
 

In standard multibody models it is assumed that the connecting points of two bodies, 

linked by an ideal revolute joint, are coincident. The introduction of the clearance separates these 

two points. Figure 1 shows a typical connection with clearance joints found in planar multibody 

systems, where the clearance size is strongly exaggerated in order to illustrate the phenomena 

associated with the revolute joints with clearance, namely, the bouncing effect. In a revolute 

clearance joint, when contact exists between the journal and bearing, a contact-impact force is 

applied perpendicular to the plane of collision. The force is typically applied as a spring damper 

element. If this element is linear, the approach is known as the Kelvin Voigt model [53]. If the 

relation is nonlinear the model is generally based on the Hertz contact law [54].  

 

Follower

Coupler

Crank

Journal
Bearing

Ground

 
Figure 1. Typical connection with clearance joints found in planar multibody systems. 

 
 

Figure 2 depicts a revolute joint with clearance, that is, the so-called journal bearing, 

where the difference in diameters between the bearing and the journal defines the diametric 

clearance. Several published research works focused on the different modes of motion of the 

journal inside the bearing boundaries. Most of these consider a three mode model for predicting 

the dynamical response of articulated systems with revolute clearance joints [55-61]. The three 

different modes of journal motion inside the bearing are the contact or following mode, the free 

flight mode, and the impact mode, which are illustrated in Fig. 2.  
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Figure 2. Types of journal motion inside the bearing boundaries. 

 

In the contact or following mode, the journal and the bearing are in permanent contact 

and a sliding motion related to each other is assumed to exist. In this mode the relative 

penetration depth varies along the circumference of the bearing. In practice, this mode is ended 

when the journal and bearing separate from each other and the journal enters in free flight mode. 

In the free flight mode, the journal can move freely inside the bearing boundaries, that is, the 

journal and the bearing are not in contact, hence, and no reaction force develop at the joint. In the 

impact mode, which occurs at the termination of the free flight mode, impact forces are applied 

and removed in the system. This mode is characterized by a discontinuity in the kinematic and 

dynamic characteristics, and a significant exchange of momentum occurs between the two 

impacting bodies. At the termination of the impact mode, the journal can enter either a free flight 

or a following mode.  

Plane of collision
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d
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Figure 3. Generic configuration of a revolute joint with clearance in a multibody system.  
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Figure 3 shows a generic configuration of a revolute joint with clearance in a multibody 

system. In the dynamic simulation, the behavior of the revolute clearance joint is treated as an 

oblique eccentric impact between the journal and the bearing. The mechanics of this type of 

impact involves both the relative normal velocity and the relative tangential velocity [62]. When 

the impact occurs, an appropriate contact law must be applied and being the resulting forces 

introduced as generalized forces in the system’s equations of motion [1]. 

Regarding to Fig. 3, the relative penetration vector between journal and bearing walls can 

be defined as 

 
2

B Jd d−⎛ ⎞= − ⎜ ⎟⎝ ⎠
δ e n  (1)  

where e is the eccentricity vector, that is, the vector that defines the distance between journal and 

bearing centers, dB and dJ are the bearing and journal diameters and n is the vector that defines 

the normal direction of the plane of collision. 

The magnitude of the penetration depth can be evaluated as 

 = e - cδ  (2)  

in which c represents the radial clearance defined as 

 
2

B Jd - dc =  (3)  

Since the most suitable and sophisticated contact-impact force models are dependent on 

the contact velocities, it is important to evaluate these velocities in order to account for the 

dissipative effects during the contact-impact process [11]. In particular, in the continuous force 

contact model it is necessary to calculate the relative velocity between impacting surfaces. The 

relative velocity vector between bearing and journal can be expressed by 

 
( ) ( )( )

C C
B J C C

B J B J

d

dt
ω ω

−
= + − −

r r
v n r r t  (4)  

where C
Br and C

Jr  are the position vectors of the contact points in the bearing and journal, n and t 

are the normal and tangential vectors, and ωB and ωJ are the bearing and journal angular 

velocities. It should be highlighted that vector t is obtained by rotating the vector n in the counter 

clockwise direction by 90º. 

The relative velocity between the contact points is projected onto the plane of collision 

and onto the normal plane of collision, yielding a relative tangential velocity, vT, and a relative 

normal velocity, vN. The normal relative velocity determines whether the contact bodies are 

approaching or separating. Similarly, the tangential relative velocity determines whether the 

contact bodies are sliding or sticking. The relative scalar velocities, normal and tangential to the 
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plane of collision are found by projecting the relative impact velocity onto each one of these 

directions 

 T
Nv = v n  (5)  

 T
Tv = v t  (6)  

Although a revolute joint with clearance does not constrain any degree of freedom from 

the mechanical system, as the ideal joint does, it imposes some restrictions, limiting the journal 

to move within the bearing. Thus, when the clearance is present in a revolute joint, two 

kinematic constraints associated with an ideal joint are removed and two degrees of freedom are 

introduced instead. The dynamics of the joint is then controlled by contact-impact forces 

between the journal and bearing. Thus, whilst a perfect revolute joint in a mechanical system 

imposes kinematic constraints, a revolute clearance joint leads to force constraints. Therefore, 

joints with clearance can be defined as force-joints instead of kinematic joints. 

When contact between the journal and bearing takes place, contact-impact forces act at 

the contact points. The contributions of these contact-impact forces to the external forces applied 

to the mechanical system are found by projecting them onto the X and Y directions. Since these 

forces do not act through the centre of mass of the bearing and journal bodies the moment 

components for each body need to be evaluated. The suitable numerical models for normal and 

tangential contact-impact forces are presented and discussed in the following section. 

In short, in dynamic analysis, the deformation is known at every time step from the 

configuration of the system and the forces are evaluated based on the state variables. With the 

variation of the contact force during the contact period, the dynamic system’s response is 

obtained by simply including updated forces into the equations of motion. Since the equations of 

motion are integrated over the period of contact, this approach results in a rather accurate 

response. Furthermore, this methodology accounts for the changes in the system’s configuration 

during the contact periods. The methodology presented in the previous sections is quite simple 

and generic to apply in the dynamic modeling and analysis of any mechanical system. For details 

on this issue, the interested reader is referred to the work developed by Flores [58]. 

 

3. Numerical models for contact forces 
 

Impact, such as it happens in a revolute clearance joint, is one of the most common types 

of dynamic loading conditions that give rise to impulsive forces, which in turn excite higher 

vibration modes and affect the dynamic characteristics of the mechanical systems. Thus, for a 

revolute joint with clearance, the contact between the journal and bearing can be modeled by the 

well known Hertz contact law [54] 



 9 

 n
NF = Kδ  (7)  

where K is the stiffness coefficient and δ is the relative penetration. The exponent n is set to 1.5. 

The parameter K depends on the material and geometric properties of the contacting surfaces. 

For instance, for two spheres in contact the generalized stiffness coefficient is a function of the 

radii of the spheres i and j and the material properties as [63] 

 

1
24

3( )
i j

i j i j

R R
K

R +Rσ σ
⎡ ⎤

= ⎢ ⎥+ ⎢ ⎥⎣ ⎦
 (8)  

where the material parameters σi and σj are given by, 

 
21 k

k
kE
νσ −= ,     (k=i,j) (9)  

the quantities νk and Ek are the Poisson’s ratio and the Young’s modulus associated with each 

sphere, respectively. 

Hertz contact law given by Eq. (7) is a pure elastic model, that is, it does not include any 

energy dissipation. Lankarani and Nikravesh [12] extended the Hertz contact law to include 

energy loss due to internal damping as follows 

 
2

( )

3(1 )1
4

n e
N

cF K δδ
δ −

⎡ ⎤−= +⎢ ⎥
⎣ ⎦

&
&  (10)  

where the stiffness coefficient K can be evaluated by Eqs. (8) and (9), ce is the restitution 

coefficient, δ& is the relative penetration velocity and ( )δ −&  is the initial impact velocity. 

 The Coulomb’s friction law of sliding friction can represent the most fundamental and 

simplest model of friction between dry contacting surfaces. When sliding takes place, the 

Coulomb law states that the tangential friction force FT is proportional to the magnitude of the 

normal contact force, FN, at the contact point by introducing a coefficient of friction cf [64]. The 

Coulomb’s friction law is independent of relative tangential velocity. In practice this is not true, 

because friction forces can depend on many parameters such as material properties, temperature, 

surfaces cleanliness, and velocity of sliding. Therefore, a continuous friction force-velocity 

relationship is desirable. Furthermore, the application of the original Coulomb’s friction law in a 

general-purpose computational program may lead numerical difficulties because it is a highly 

nonlinear phenomenon that may involve switching between sliding and stiction conditions. In 

order to avoid such difficulties, a modified Coulomb law is used [58] 

 T
T f d N

T

F c c F= − v
v

 (11)  

where cf is the friction coefficient, FN is the normal force, vT is the relative tangential 

velocity and cd is a dynamic correction coefficient, which is expressed as 
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 (12)  

where v0 and v1 are given tolerances for the tangential velocity [58]. The dynamic correction 

factor cd prevents that the friction force changes direction in the presence of almost null 

values of the tangential velocity, which would be perceived by the integration algorithm as a 

dynamic response with high frequency contents, forcing it to reduce the time step size.  

 
4. Multibody systems formulation 
 

The equations of motion for a dynamic multibody system subjected to holonomic 

constraints can be stated in the form [1] 

 
T⎡ ⎤ ⎧ ⎫ ⎧ ⎫

=⎢ ⎥ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦

q

q

M Φ q g
Φ 0 λ γ

&&
 (13)  

with the reference frame placed at the center of mass for each body, M is the system mass 

matrix, qΦ  is the Jacobian matrix of constraint equations, the vector q&& contains the generalized 

state accelerations, λ  is the vector that contains the Lagrange multipliers, g is the vector of 

generalized forces and γ  is the vector of quadratic velocity terms that is used to describe Coriolis 

and centrifugal terms in the equations of motion [1]. Equation (13) is formed as a combination of 

the equations of motion and kinemtaic constraint equations, often referred to as a mixed set of 

differential and algebraic equations. 

A set of initial conditions (positions and velocities) is required to start the dynamic 

simulation. The selection of the appropriate initial conditions plays a key role in the prediction of 

the dynamic performance of mechanical system [65]. In the present work, the initial conditions 

are based on the results of kinematic simulation of mechanical system in which all the joints are 

assumed to be ideal, that is, without clearance. The subsequent initial conditions for each time 

step in the simulation are obtained in the usual manner from the final conditions of the previous 

time step [1]. In order to stabilize or keep under control the constraints violation, Eq. (13) is 

solved using the Baumgarte stabilization technique [66]. In turn, the integration process is 

performed using a predictor-corrector algorithm with both variable step size and order [67]. 

The use of numerical algorithms with automated adjust step size is particularly important 

in contact problems whose dynamic response is quite complex due to the suddenly change in 

kinematic configuration. In such events, the use of a constant time step is computationally 

inefficient and the system could be overlooked due to insufficient time resolution. Thus, 

automated time step size adaptability is therefore a crucial part of the dynamic solution 
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procedure. Moreover, the abrupt configuration changes caused by rapidly variation of contact 

forces are source of stiffness, since the natural frequency of the system is widely spread. Thus, 

the time step size must be adjusted in order to capture the fast and low components of the system 

response [1]. 

 

5. Results and discussion 
 

This section contains extensive results obtained from computational simulations of a 

planar slider-crank mechanism with multiple clearance joints when subjected to different test 

scenarios in order to carry out a parametric study. This study takes into account the main 

functional parameters of the slider-crank mechanism, chiefly, clearance size, input crank speed 

and number of joints considered as clearance joints. The computational time consumed during 

numerical simulations is used as a measured of the computational efficiency of the proposed 

methodologies. 

 

5.1. Description of the slider-crank mechanism 

Figure 4 shows the configuration of the slider-crank mechanism selected, which consists 

of four rigid bodies that represent the crank, connecting rod, slider and ground, one ideal 

revolute joint and one ideal translational joint. Two revolute joints with clearance exist between 

the crank and connecting rod, and between the connecting rod and slider. The length and inertia 

characteristics of this mechanism are listed in Table 1. Due to the presence of the two non-ideal 

joints this system has five degrees of freedom. The acceleration due to gravity is taken as acting 

in the negative Y direction and the mechanism is defined as moving in a vertical plane. 

 

Clearance

1η

1ξ

4η

3η2η
2ξ

3ξ

4ξX

Y

1

2
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ClearanceCrank
Connecting rod

Slider

Ground

 
Figure 4. Slider-crank mechanism with two revolute joints with clearance.  

 
 

Body Nr. Length [m] Mass [kg] Moment of inertia [kgm2] 
2 0.05 0.30 0.00010 
3 0.12 0.21 0.00025 
4 - 0.14 0.00010 

Tab. 1: Geometric and inertia properties of the slider-crank mechanism. 
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The crank, which is the driving link, rotates with a constant angular velocity of 5000 rpm. 

The initial configuration of the mechanism is defined with the crank and the connecting rod 

collinear, and the journal and bearing centers coincident. Furthermore, the initial positions and 

velocities necessary to start the dynamic analysis are obtained from kinematic simulation of the 

slider-crank mechanism in which all the joints are considered to be ideal. Table 2 gives the main 

parameters used for the different models, required to characterize the problem and for the 

numerical methods, required to solve the system dynamics. 

 

 

Nominal bearing diameter 20.0 mm Poisson’s ratio 0.3 
Standard diametric clearance 0.05 mm Integrator algorithm Gear 

Coefficient of restitution  0.9 Baumgarte – α, β 5 
Coefficient of friction 0.01 Integration step size 1×10-6 s 

Young’s modulus 207 GPa Total time of simulation 10.0 s 

Tab. 2: Parameters used in the dynamic simulations of the slider-crank mechanism with 
clearance joints. 

 

The diametric clearance size of the non-ideal revolute joints is taken to be equal to 

0.05 mm, which corresponds to the actual clearance size in a typical journal-bearing with 

nominal dimensions used in the present work. For example, for a journal-bearing in which 

the nominal diameter falls into the interval between 18 and 30 mm, the minimum and 

maximum recommended diametric clearance sizes are 0.02 and 0.06, respectively [68]. 

In what follows, several numerical results are presented and analyzed to demonstrate the 

computational implementation and efficiency of the proposed methodologies. The dynamic 

response of the slider-crank mechanism is quantified by plotting the slider velocity and 

acceleration, joint reaction force and the reaction moment that acts on the crank. In addition, the 

journal center orbit inside the bearing boundaries and the maps that relates the eccentricity and 

eccentricity velocity are plotted too. The global results are relative to two complete crank 

rotations after steady state has been reached. Furthermore, the results for this system are 

compared with the dynamic behavior of the slider mechanism with ideal joints only. 

 

5.2. Influence of the clearance size: one clearance joint 

In this section, the influence of the clearance size on the dynamic behavior of the slider-

crank mechanism is investigated. In the simulation of the mechanism, only one joint is modeled 

as clearance joint, namely, the joint that connects the connecting rod and slider. 
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Figure 5 shows the results for the case in which the diametric clearance size is equal to 

0.05 mm and crank speed of 5000 rpm, as it was presented in the previous section. Note that the 

results are plotted against those obtained for ideal joint, being reported for the two full crank 

rotations after steady-state has been reached. The results plotted are the slider velocity and 

acceleration, the reaction force that is produced in the clearance joint, the crank reaction moment 

that acts on the crank, the trajectories of the journal center relative to the bearing center and, 

finally, the Poincaré map. The eccentricity and eccentricity velocity in the clearance joint are the 

parameters selected to plot this map. 

In Fig. 5(a) it is observed that the existence of a clearance joint does not influence the 

slider velocity in a significant manner. In sharp contrast, the slider acceleration is strongly 

affected by the contact-impact forces that takes place between journal and bearing contacting 

surfaces in the clearance joint. The slider acceleration is subjected to peaks caused by contact 

forces that are propagated through the rigid bodies of the mechanism, as perceived in Fig. 5(b) 

where the acceleration of the slider is displayed. The same phenomena can be observed in the 

curve of joint reaction force and crank moment represented by Figs. 5(c) and 5(d), respectively. 

As far as the trajectory of the journal center relative to the bearing center is concerned, only one 

type of motion between the two bodies is observed, namely the permanent or continuous contact 

mode. The relative penetration depth between the journal and bearing is visible by the lines of 

the journal path that are plotted outside the clearance circle, as illustrated in Fig. 5(e). From the 

Poincaré map of Fig. 5(f) it can be concluded that the behavior of the slider-crank mechanism 

modeled with a clearance joint tends to be aperiodic, or even chaotic, due to the nonlinear nature 

of the contact-impact phenomena verified between the joint components. This conclusion can 

easily be explained based on the spread out nature of the Poincaré map. In fact, non periodic 

responses are extremely sensitive to initial conditions and are densely filled by orbits or points in 

the Poincaré map. A complicated looking phase in a Poincaré map is one indicator of chaotic 

motion. Quasi-periodic orbits fill up the Poincaré maps as the chaotic orbits, but they do so in a 

fully predictable manner since there is no sensitive dependence on the initial conditions [69]. 

 



 14 

-200

-100

0

100

200

0 180 360 540 720
Crank angle [º]

R
ea

ct
io

n 
cr

an
k 

m
om

en
t [

N
m

]

Ideal joint One clearance joint (c=0.05mm)

0

1

2

3

4

0 180 360 540 720
Crank angle [º]

Jo
in

t r
ea

ct
io

n 
fo

rc
e 

[k
N

] Ideal joint One clearance joint (c=0.05mm)

-30

-20

-10

0

10

20

30

0 180 360 540 720
Crank angle [º]

Sl
id

er
 a

cc
el

er
at

io
n 

[1
03 m

/s
2 ]

Ideal joint One clearance joint (c=0.05mm)

-30

-20

-10

0

10

20

30

40

0 180 360 540 720
Crank angle [º]

Sl
id

er
 v

el
oc

ity
 [m

/s
]

Ideal joint One clearance joint (c=0.05mm)

(a) (b)

(c) (d)

(e) (f)

-0.10

-0.05

0.00

0.05

0.10

0.000025 0.0000275 0.00003
Eccentricity [m]

Ec
ce

nt
ric

ity
 v

el
oc

ity
 [m

/s
]

0.05 mm

 
Figure 5. (a) Slider velocity; (b) Slider acceleration; (c) Joint reaction force at the clearance joint; 
(d) Crank moment required to maintain its angular velocity constant; (e) Journal center trajectory 

relative to the bearing center; (f) Poincaré map.  
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Figure 6. Slider acceleration for different diametric clearance sizes: (a) c=0.05 mm; (b) c=0.10 

mm; (c) c=0.20 mm; (d) c=0.50 mm.  
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Figure 7. Joint reaction force for different diametric clearance sizes: (a) c=0.05 mm; (b) c=0.10 

mm; (c) c=0.20 mm; (d) c=0.50 mm.  
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Figure 8. Journal trajectories for different diametric clearance sizes: (a) c=0.05 mm; (b) c=0.10 

mm; (c) c=0.20 mm; (d) c=0.50 mm.  
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Figure 9. Poincaré maps for different diametric clearance sizes: (a) c=0.05 mm; (b) c=0.10 mm; 

(c) c=0.20 mm; (d) c=0.50 mm.  
 

In the Figs. 6 through 9, the slider acceleration, the joint reaction force, the journal center 

trajectories and the Poincaré maps are used to illustrate the dynamic behavior of the slider-crank 

mechanism when different diametric clearance sizes are considered. The values for the diametric 



 17 

clearance of the revolute joint are chosen to be 0.05, 0.10, 0.20 and 0.50 mm. The two last values 

are clearly exaggerated in order to study the influence of the variation of the clearance size on 

the system’s dynamic response. Figure 6 shows that when the clearance size is increased the 

dynamic system behavior tends to be non periodic. This idea is supported by the higher peaks in 

the slider acceleration curves, which means that impacts followed by rebounds take place, 

instead of continuous or permanent contact between the journal and bearing walls. When the 

clearance is small, the system response tends to be closer to the ideal response meaning that the 

journal and bearing experiment a smaller number of impacts and the journal follows the bearing 

wall. Hence, the clearance joint behavior tends to be periodic instead of nonlinear or chaotic. 

This observation can be drawn by examination of Fig. 7 relative to the joint reaction force. The 

level of peaks force increase with the increasing the clearance size, owing to the higher number 

of impacts that take place. This conclusion can be confirmed in the journal center trajectories 

plots and in the respective Poincaré maps displayed in Figs. 8 and 9, respectively. Observing Fig. 

8 it can be drawn that for larger clearances there are some periods in which journal is in free-

flight motion inside the bearing boundaries. In fact, for clearance size equal 0.2 and 0.5 mm the 

three types of journal motion are observed, namely, the free-flight motion, the impact mode and 

the permanent or continuous contact mode. From the Poincaré maps analysis, the slider-crank 

mechanism behavior can easily be characterized, and it is possible to distinguish between 

periodic, quasi-periodic and chaotic responses, when the clearance size increases. This chaotic 

response suggests that impacts followed by some rebounds take place. Figure 9(a) shows a quasi-

periodic motion, because the orbits fill up the Poincaré maps in a fully predictable manner, thus, 

there is no sensitive dependence on the initial conditions. It is clear that when the clearance is 

reduced the dynamic response tends to be periodic or regular, which indicates that the journal 

follows the bearing wall. In fact, in mechanical systems nonlinearities arise from intermittent 

motion, clearance joints, friction effect, and contact forces, among others. The relation between 

the clearance size and the type of motion observed is clearly identified from plots in Figs. 8 and 

9. 

 

 

5.3. Influence of the input crank speed: one clearance joint 

The influence of the input crank speed on the dynamic behavior of the slider-crank 

mechanism is investigated in this section. Again, in the simulation of the mechanism, only one 

joint is modeled as clearance joint, that is, the joint that connects the connecting rod and slider. 
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Figure 10. (a) Slider velocity; (b) Slider acceleration; (c) Joint reaction force at the clearance 
joint; (d) Crank moment required to maintain its angular velocity constant; (e) Journal center 

trajectory relative to the bearing center; (f) Poincaré map.  
 

 

Figure 10 illustrates the global results for the simulation in which the diametric clearance 

size is equal to 0.05 mm and the input crank speed is of 50 rpm. The effect of the clearance joint 

is evident on the system’s response, namely, in high peaks on the slider acceleration, joint 

reaction force and crank moment. These peaks are associated with the contact-impact forces 

developed in clearance joint. Since in this simulation the input crank speed is relatively low (50 

rpm) the journal is almost always in permanent contact with bearing wall, as illustrated in Fig. 

10(e). Hence, the system’s behavior tends to be quasi-periodic as it is visible in the respective 

Poincaré map of Fig. 10(f), where a strange attractor is evident and is also a strong indicator for 

this quasi-periodic response. 

The influence of the input crank speed on the dynamic response of the slider-crank 

mechanism is illustrated in Figs. 11 to 14. Four different values for input crank speed were 
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selected, chiefly, 50, 500, 1000 and 5000 rpm. These different input crank speeds imply the use 

of different scales for results plotted. By and large, the influence of the clearance joint on the 

output results is similar for all crank speed simulations, that is, the slider acceleration and joint 

reaction force curves present peaks due to collisions between the journal and bearing. From Fig. 

13 it can be observed that the relative deformation between the journal and bearing increases 

with the crank speed, because the impacts are severer. In addition, for higher values for crank 

speed, the system’s behavior tends to be nonlinear, as it is quite visible in Poincaré maps of Fig. 

14. 
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Figure 11. Slider acceleration for different crank speed values: (a) n=50 rpm; (b) n=500 rpm; (c) 

n=1000 rpm; (d) n=5000 rpm.  
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Figure 12. Joint reaction force for different crank speed values: (a) n=50 rpm; (b) n=500 rpm; (c) 

n=1000 rpm; (d) n=5000 rpm.  
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Figure 13. Journal center trajectories for different crank speed values: (a) n=50 rpm; (b) n=500 

rpm; (c) n=1000 rpm; (d) n=5000 rpm.  
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Figure 14. Poincaré maps for different crank speed values: (a) n=50 rpm; (b) n=500 rpm; (c) 

n=1000 rpm; (d) n=5000 rpm.  
 

 
 
5.4. Influence of the number of clearance joints: one, two and three clearance joints 
 
 The influence of the number of clearance joints on the dynamic response of the slider-

crank mechanism is analyzed in this section. The simulation of the mechanism is performed with 

one, two and three clearance joints. 

 Figure 15 shows the global results for the case in which the joint that connects the crank 

and connecting rod is modeled as clearance joint with 0.05 mm for diametric clearance size, 

being the system operating at 5000 rpm. In general, the results, as expected, are dependent on the 

contact-impact phenomena that take place between the journal and bearing. From Fig. 15(e) it 

can be observed that the journal and bearing are in permanent or continuous contact mode. The 

system’s response is also chaotic, as illustrated in Fig. 15(f). 

 Figures 16 to 19 illustrate the results obtained when the mechanism is modeled with one, 

two and three clearance joints, being the global system’s response similar, namely in what 

concerns with peaks on the slider acceleration and joint reaction force. It have to be noted that 

the journal trajectories and Poincaré maps have similar look for all the cases simulated, as 

illustrated in Figs. 18 and 19. 
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Figure 15. (a) Slider velocity; (b) Slider acceleration; (c) Joint reaction force at the clearance 
joint; (d) Crank moment required to maintain its angular velocity constant; (e) Journal center 

trajectory relative to the bearing center; (f) Poincaré map.  
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Figure 16. Slider acceleration for different number of clearance joints: (a) One clearance joint 
between connecting rod and slider; (b) One clearance joint between crank and connecting rod; 

(c) One clearance joint between crank and connecting rod and one clearance joint between 
connecting rod and slider; (d) All three revolute joints have clearance.  
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Figure 17. Joint reaction force for different number of clearance joints: (a) One clearance joint 
between connecting rod and slider; (b) One clearance joint between crank and connecting rod; 

(c) One clearance joint between crank and connecting rod and one clearance joint between 
connecting rod and slider; (d) All three revolute joints have clearance.  
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Figure 18. Journal center trajectories for different number of clearance joints: (a) One clearance 
joint between connecting rod and slider; (b) One clearance joint between crank and connecting 
rod; (c) One clearance joint between crank and connecting rod and one clearance joint between 

connecting rod and slider; (d) All three revolute joints have clearance.  
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Figure 19. Poincaré maps for different number of clearance joints: (a) One clearance joint 

between connecting rod and slider; (b) One clearance joint between crank and connecting rod; 
(c) One clearance joint between crank and connecting rod and one clearance joint between 

connecting rod and slider; (d) All three revolute joints have clearance.  
 

Finally, it is important to analyze the computation time consumed in each simulation 

performed in the previous section. Figure 20 shows the computation time wasted for the three 
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parameters studied, namely, the diametric clearance size, the input crank speed and the number 

of joint modeled as clearance joints. By observing Fig. 20, the first conclusion is that the 

computation time decreases when the number of clearance joints included in the system increase. 

Secondly, the computation time increases with clearance size and decreases when the number of 

joints modeled as clearance joints increases too. The variation of the input crank speed does not 

influence significantly the total amount of computation time. The computational simulations 

were performed in a Pentium 4 (3.2GHz) computer. For this purpose, a FORTRAN code named 

MUBODYNA (acronym for Multibody Dynamics). This program has been developed by author 

for dynamic analysis of general planar multibody systems [70]. 
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Figure 20. Variation of the computation time consumed: (a) Diametric clearance size; (b) Input 

crank angular speed; (c) Number of joints with clearance.  
 

6. Concluding Remarks 
 

A general methodology for modeling and simulating multiple clearance joints in rigid 

multibody systems was presented and discussed throughout this work. The equations of motion 

that govern the dynamic response of the general multibody systems incorporate the contact 

forces due to the collisions of the bodies that constitute the clearance joints. A continuous 

contact force model provides the intra-joint contact-impact forces that develop during the normal 

operations of the mechanisms. A suitable model for revolute clearance joints is embedded into 

the multibody systems methodology. An elementary slider-crank mechanism was used to 

demonstrate the methodology proposed and to perform a parametric study. The main functional 

parameters were used for this study, namely, the diametric clearance size, the input crank speed 
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and the number of joints modeled as clearance joints. In addition, the computation time was 

evaluated in each simulation in order to test the numerical efficiency. In general, the presented 

methodology is simple, general and cheap from computational view point. This particular issue 

has not been addressed before in the literature. 

From the numerical simulations performed, it can be concluded that there are considerable 

changes in joint reaction forces and on the crank moments due to the effect of clearances. These 

changes are mainly due to the peaks observed in the slider acceleration curves. It is also 

important to note that the magnifications of forces and moments in the slider-crank mechanism 

as affected by revolute clearance joints essentially depend on the clearance size and input crank 

speed. From the main results obtained in this work, it can be also observed that multibody 

systems with clearance joints are well known as nonlinear dynamic systems that, under certain 

conditions, exhibit a chaotic response. From the results presented above, it is found that the 

dynamics of the revolute clearance joint in mechanical systems is sensitive to the clearance size 

value operating conditions. With a small change in one of these parameters the response of the 

system can shift from chaotic to periodic and vice-versa. 

Finally, it should be highlighted that the results presented in this paper represent an upper 

bound of the joint reaction forces and crank moments due to the existence of clearance joints, 

since the elasticity of bodies and lubrication action in the joints were not included in the analysis. 

These effects tend to reduce the values of these joint reaction forces and crank moments. 

Moreover, lubrication could also change the entire behavior of the mechanism. 
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