48 research outputs found

    Ethical issues in autologous stem cell transplantation (ASCT) in advanced breast cancer: A systematic literature review

    Get PDF
    BACKGROUND: An effectiveness assessment on ASCT in locally advanced and metastatic breast cancer identified serious ethical issues associated with this intervention. Our objective was to systematically review these aspects by means of a literature analysis. METHODS: We chose the reflexive Socratic approach as the review method using Hofmann's question list, conducted a comprehensive literature search in biomedical, psychological and ethics bibliographic databases and screened the resulting hits in a 2-step selection process. Relevant arguments were assembled from the included articles, and were assessed and assigned to the question list. Hofmann's questions were addressed by synthesizing these arguments. RESULTS: Of the identified 879 documents 102 included arguments related to one or more questions from Hofmann's question list. The most important ethical issues were the implementation of ASCT in clinical practice on the basis of phase-II trials in the 1990s and the publication of falsified data in the first randomized controlled trials (Bezwoda fraud), which caused significant negative effects on recruiting patients for further clinical trials and the doctor-patient relationship. Recent meta-analyses report a marginal effect in prolonging disease-free survival, accompanied by severe harms, including death. ASCT in breast cancer remains a stigmatized technology. Reported health-related-quality-of-life data are often at high risk of bias in favor of the survivors. Furthermore little attention has been paid to those patients who were dying. CONCLUSIONS: The questions were addressed in different degrees of completeness. All arguments were assignable to the questions. The central ethical dimensions of ASCT could be discussed by reviewing the published literature

    The association of polymorphisms in hormone metabolism pathway genes, menopausal hormone therapy, and breast cancer risk: a nested case-control study in the California Teachers Study cohort

    Get PDF
    Abstract Introduction The female sex steroids estrogen and progesterone are important in breast cancer etiology. It therefore seems plausible that variation in genes involved in metabolism of these hormones may affect breast cancer risk, and that these associations may vary depending on menopausal status and use of hormone therapy. Methods We conducted a nested case-control study of breast cancer in the California Teachers Study cohort. We analyzed 317 tagging single nucleotide polymorphisms (SNPs) in 24 hormone pathway genes in 2746 non-Hispanic white women: 1351 cases and 1395 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by fitting conditional logistic regression models using all women or subgroups of women defined by menopausal status and hormone therapy use. P values were adjusted for multiple correlated tests (P ACT). Results The strongest associations were observed for SNPs in SLCO1B1, a solute carrier organic anion transporter gene, which transports estradiol-17ÎČ-glucuronide and estrone-3-sulfate from the blood into hepatocytes. Ten of 38 tagging SNPs of SLCO1B1 showed significant associations with postmenopausal breast cancer risk; 5 SNPs (rs11045777, rs11045773, rs16923519, rs4149057, rs11045884) remained statistically significant after adjusting for multiple testing within this gene (P ACT = 0.019-0.046). In postmenopausal women who were using combined estrogen-progestin therapy (EPT) at cohort enrollment, the OR of breast cancer was 2.31 (95% CI = 1.47-3.62) per minor allele of rs4149013 in SLCO1B1 (P = 0.0003; within-gene P ACT = 0.002; overall P ACT = 0.023). SNPs in other hormone pathway genes evaluated in this study were not associated with breast cancer risk in premenopausal or postmenopausal women. Conclusions We found evidence that genetic variation in SLCO1B1 is associated with breast cancer risk in postmenopausal women, particularly among those using EPT

    Estimation of the burden of cardiovascular disease attributable to modifiable risk factors and cost-effectiveness analysis of preventative interventions to reduce this burden in Argentina

    Get PDF
    Background. Cardiovascular disease (CVD) is the primary cause of mortality and morbidity in Argentina representing 34.2% of deaths and 12.6% of potential years of life lost (PYLL). The aim of the study was to estimate the burden of acute coronary heart disease (CHD) and stroke and the cost-effectiveness of preventative population-based and clinical interventions. Methods. An epidemiological model was built incorporating prevalence and distribution of high blood pressure, high cholesterol, hyperglycemia, overweight and obesity, smoking, and physical inactivity, obtained from the Argentine Survey of Risk Factors dataset. Population Attributable Fraction (PAF) of each risk factor was estimated using relative risks from international sources. Total fatal and non-fatal events, PYLL and Disability Adjusted Life Years (DALY) were estimated. Costs of event were calculated from local utilization databases and expressed in international dollars (I).Incrementalcost−effectivenessratios(ICER)wereestimatedforsixinterventions:reducingsaltinbread,massmediacampaigntopromotetobaccocessation,pharmacologicaltherapyofhighbloodpressure,pharmacologicaltherapyofhighcholesterol,tobaccocessationtherapywithbupropion,andamultidrugstrategyforpeoplewithanestimatedabsoluterisk>20). Incremental cost-effectiveness ratios (ICER) were estimated for six interventions: reducing salt in bread, mass media campaign to promote tobacco cessation, pharmacological therapy of high blood pressure, pharmacological therapy of high cholesterol, tobacco cessation therapy with bupropion, and a multidrug strategy for people with an estimated absolute risk > 20% in 10 years. Results. An estimated total of 611,635 DALY was lost due to acute CHD and stroke for 2005. Modifiable risk factors explained 71.1% of DALY and more than 80% of events. Two interventions were cost-saving: lowering salt intake in the population through reducing salt in bread and multidrug therapy targeted to persons with an absolute risk above 20% in 10 years; three interventions had very acceptable ICERs: drug therapy for high blood pressure in hypertensive patients not yet undergoing treatment (I 2,908 per DALY saved), mass media campaign to promote tobacco cessation amongst smokers (I3,186perDALYsaved),andloweringcholesterolwithstatindrugtherapy(I 3,186 per DALY saved), and lowering cholesterol with statin drug therapy (I 14,432 per DALY saved); and one intervention was not found to be cost-effective: tobacco cessation with bupropion (I$ 59,433 per DALY saved). Conclusions. Most of the interventions selected were cost-saving or very cost-effective. This study aims to inform policy makers on resource-allocation decisions to reduce the burden of CVD in Argentina.Centro de Endocrinología Experimental y Aplicada (CENEXA

    The potential science and engineering value of samples delivered to Earth by Mars sample return

    Get PDF
    © The Meteoritical Society, 2019. Executive Summary: Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team (iMOST). The purpose of the team is to re-evaluate and update the sample-related science and engineering objectives of a Mars Sample Return (MSR) campaign. The iMOST team has also undertaken to define the measurements and the types of samples that can best address the objectives. Seven objectives have been defined for MSR, traceable through two decades of previously published international priorities. The first two objectives are further divided into sub-objectives. Within the main part of the report, the importance to science and/or engineering of each objective is described, critical measurements that would address the objectives are specified, and the kinds of samples that would be most likely to carry key information are identified. These seven objectives provide a framework for demonstrating how the first set of returned Martian samples would impact future Martian science and exploration. They also have implications for how analogous investigations might be conducted for samples returned by future missions from other solar system bodies, especially those that may harbor biologically relevant or sensitive material, such as Ocean Worlds (Europa, Enceladus, Titan) and others. Summary of Objectives and Sub-Objectives for MSR Identified by iMOST: Objective 1 Interpret the primary geologic processes and history that formed the Martian geologic record, with an emphasis on the role of water. Intent To investigate the geologic environment(s) represented at the Mars 2020 landing site, provide definitive geologic context for collected samples, and detail any characteristics that might relate to past biologic processesThis objective is divided into five sub-objectives that would apply at different landing sites. 1.1 Characterize the essential stratigraphic, sedimentologic, and facies variations of a sequence of Martian sedimentary rocks. Intent To understand the preserved Martian sedimentary record. Samples A suite of sedimentary rocks that span the range of variation. Importance Basic inputs into the history of water, climate change, and the possibility of life 1.2 Understand an ancient Martian hydrothermal system through study of its mineralization products and morphological expression. Intent To evaluate at least one potentially life-bearing “habitable” environment Samples A suite of rocks formed and/or altered by hydrothermal fluids. Importance Identification of a potentially habitable geochemical environment with high preservation potential. 1.3 Understand the rocks and minerals representative of a deep subsurface groundwater environment. Intent To evaluate definitively the role of water in the subsurface. Samples Suites of rocks/veins representing water/rock interaction in the subsurface. Importance May constitute the longest-lived habitable environments and a key to the hydrologic cycle. 1.4 Understand water/rock/atmosphere interactions at the Martian surface and how they have changed with time. Intent To constrain time-variable factors necessary to preserve records of microbial life. Samples Regolith, paleosols, and evaporites. Importance Subaerial near-surface processes could support and preserve microbial life. 1.5 Determine the petrogenesis of Martian igneous rocks in time and space. Intent To provide definitive characterization of igneous rocks on Mars. Samples Diverse suites of ancient igneous rocks. Importance Thermochemical record of the planet and nature of the interior. Objective 2 Assess and interpret the potential biological history of Mars, including assaying returned samples for the evidence of life. Intent To investigate the nature and extent of Martian habitability, the conditions and processes that supported or challenged life, how different environments might have influenced the preservation of biosignatures and created nonbiological “mimics,” and to look for biosignatures of past or present life.This objective has three sub-objectives: 2.1 Assess and characterize carbon, including possible organic and pre-biotic chemistry. Samples All samples collected as part of Objective 1. Importance Any biologic molecular scaffolding on Mars would likely be carbon-based. 2.2 Assay for the presence of biosignatures of past life at sites that hosted habitable environments and could have preserved any biosignatures. Samples All samples collected as part of Objective 1. Importance Provides the means of discovering ancient life. 2.3 Assess the possibility that any life forms detected are alive, or were recently alive. Samples All samples collected as part of Objective 1. Importance Planetary protection, and arguably the most important scientific discovery possible. Objective 3 Quantitatively determine the evolutionary timeline of Mars. Intent To provide a radioisotope-based time scale for major events, including magmatic, tectonic, fluvial, and impact events, and the formation of major sedimentary deposits and geomorphological features. Samples Ancient igneous rocks that bound critical stratigraphic intervals or correlate with crater-dated surfaces. Importance Quantification of Martian geologic history. Objective 4 Constrain the inventory of Martian volatiles as a function of geologic time and determine the ways in which these volatiles have interacted with Mars as a geologic system. Intent To recognize and quantify the major roles that volatiles (in the atmosphere and in the hydrosphere) play in Martian geologic and possibly biologic evolution. Samples Current atmospheric gas, ancient atmospheric gas trapped in older rocks, and minerals that equilibrated with the ancient atmosphere. Importance Key to understanding climate and environmental evolution. Objective 5 Reconstruct the processes that have affected the origin and modification of the interior, including the crust, mantle, core and the evolution of the Martian dynamo. Intent To quantify processes that have shaped the planet's crust and underlying structure, including planetary differentiation, core segregation and state of the magnetic dynamo, and cratering. Samples Igneous, potentially magnetized rocks (both igneous and sedimentary) and impact-generated samples. Importance Elucidate fundamental processes for comparative planetology. Objective 6 Understand and quantify the potential Martian environmental hazards to future human exploration and the terrestrial biosphere. Intent To define and mitigate an array of health risks related to the Martian environment associated with the potential future human exploration of Mars. Samples Fine-grained dust and regolith samples. Importance Key input to planetary protection planning and astronaut health. Objective 7 Evaluate the type and distribution of in-situ resources to support potential future Mars exploration. Intent To quantify the potential for obtaining Martian resources, including use of Martian materials as a source of water for human consumption, fuel production, building fabrication, and agriculture. Samples Regolith. Importance Production of simulants that will facilitate long-term human presence on Mars. Summary of iMOST Findings: Several specific findings were identified during the iMOST study. While they are not explicit recommendations, we suggest that they should serve as guidelines for future decision making regarding planning of potential future MSR missions. The samples to be collected by the Mars 2020 (M-2020) rover will be of sufficient size and quality to address and solve a wide variety of scientific questions. Samples, by definition, are a statistical representation of a larger entity. Our ability to interpret the source geologic units and processes by studying sample sub sets is highly dependent on the quality of the sample context. In the case of the M-2020 samples, the context is expected to be excellent, and at multiple scales. (A) Regional and planetary context will be established by the on-going work of the multi-agency fleet of Mars orbiters. (B) Local context will be established at field area- to outcrop- to hand sample- to hand lens scale using the instruments carried by M-2020. A significant fraction of the value of the MSR sample collection would come from its organization into sample suites, which are small groupings of samples designed to represent key aspects of geologic or geochemical variation. If the Mars 2020 rover acquires a scientifically well-chosen set of samples, with sufficient geological diversity, and if those samples were returned to Earth, then major progress can be expected on all seven of the objectives proposed in this study, regardless of the final choice of landing site. The specifics of which parts of Objective 1 could be achieved would be different at each of the final three candidate landing sites, but some combination of critically important progress could be made at any of them. An aspect of the search for evidence of life is that we do not know in advance how evidence for Martian life would be preserved in the geologic record. In order for the returned samples to be most useful for both understanding geologic processes (Objective 1) and the search for life (Objective 2), the sample collection should contain BOTH typical and unusual samples from the rock units explored. This consideration should be incorporated into sample selection and the design of the suites. The retrieval missions of a MSR campaign should (1) minimize stray magnetic fields to which the samples would be exposed and carry a magnetic witness plate to record exposure, (2) collect and return atmospheric gas sample(s), and (3) collect additional dust and/or regolith sample mass if possible

    Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene Series: Where and how to look for potential candidates

    Get PDF
    International audienc

    Knowing your midwife during labour

    No full text
    The paucity of research examining effects of a known carer during labour has been highlighted by a number of authors. This paper compares clinical and psycho-social outcomes of women cared for by a known midwife during labour with those cared for by an unknown associate midwife. Economic implications are also discussed.Noreen Shields, Ann Holmes, Helen Cheyne, Mary McGinley, Denise Young, W. Harper Gilmour, Deborah Turnbull and Margaret Rei
    corecore