209 research outputs found

    Sinai and Norfa chicken diversity revealed by microsatellite markers

    Get PDF
    The present study aimed to outline the population differentiation of Sinai and Norfa chicken, native to Egypt, with microsatellite markers. Twenty microsatellite loci recommended by the Food and Agriculture Organization (FAO) were used. Fifty eight birds were sampled (29 for each strain: 12 males + 17 females). Data were collected and genetic diversity indicators were assessed utilizing the approaches implemented in FSTAT, Cervus 3.0.7 and GenAlEx 6.5 software programmes. A total number of 182 alleles were detected with an average value of 9.1 allele per locus. The expected heterozygosity was 6.625 and 6.343 in Norfa and Sinai chickens, respectively. Norfa chickens produced 15 private alleles, while there were 9 unique alleles detected in Sinai chickens (13.18% private alleles as a percentage of the total observed number of alleles). Fixation indices’ (FST, FIS, and FIT) values were 0.060, 0.410 and 0.438, respectively, across all 20 loci investigated. Results indicated that the studied populations were genetically differentiated. Consequently, they have high breeding potential. Efforts should be made to incorporate the other local chicken strains as unique genetic resources into conservation programmes. This should begin with proper management of these flocks to ensure the maintenance of their genetic diversity over time by avoiding inbreeding. Such information is likely to have a profound effect on the success of genetic improvement and completes information from phenotypes and biometric measurements of the domestic chickens in Egypt.Keywords: Egyptian, genetic diversity, local chicken, microsatellit

    Semilla de quinoa: Fuente de nutracéuticos lipófilos para la prevención del síndrome metabólico en modelo de rata

    Get PDF
    Metabolic syndrome (MS) is a cluster of metabolic changes including hypertriglyceridemia, elevated glucose tolerance and fatty liver. The aim of this research was to study the bioactivity of petroleum ether extracts prepared from quinoa 1 and Hualhuas quinoa in a MS rat model. Fatty acids and α-tocopherol were assessed in the extracts. MS was induced by feeding a high fructose-high fat diet (HFFD). Four groups of rats were assigned: the control group, fed a balanced diet; the control group, fed a HFFD diet; and two test groups, fed on a HFFD diet and treated by either quinoa 1 or hualhuas extract. The Glucose tolerance, plasma lipids, oxidative stress biomarkers, liver lipids and histopathology of the liver and heart were assessed. The results showed that extracts from both quinoa varieties had the potential to prevent MS; although quinoa 1 was more effective. In both varieties, the major fatty acid was linoleic. Hualhuas showed a higher percentage of linolenic acid than quinoa 1; while more alpha-tocopherol was present in quinoa1.El síndrome metabólico (SM) es un conjunto de cambios metabólicos que incluyen hipertrigliceridemia, tolerancia elevada a la glucosa e hígado graso. El objetivo de la investigación fue estudiar la bioactividad de extractos de éter de petróleo preparados a partir de quinoa 1 y quinoa Hualhuas en modelo de rata con SM. En los extractos se evaluaron los ácidos grasos y el α-tocoferol. El SM se indujo mediante la alimentación con una dieta alta en fructosa y grasas (HFFD). Se asignaron cuatro grupos de ratas. El control se alimentó con una dieta equilibrada, otro grupo se alimentó con una dieta HFFD y dos grupos de prueba alimentados con HFFD se trataron con quinoa 1 o extracto de hualhuas. Se evaluaó la tolerancia a la glucosa, los lípidos plasmáticos, los biomarcadores de estrés oxidativo, los lípidos hepáticos y la histopatología del hígado y el corazón. Los resultados mostraron que los extractos de ambas variedades de quinoa tenían el potencial de prevenir el SM; aunque la quinoa 1 fue más efectiva. En ambas variedades el ácido graso principal fue el linoleico. Las hualhuas mostraron mayor porcentaje de ácido linolénico que la quinoa 1, mientras que la quinoa 1 presentó más alfa-tocoferol

    The Flip of the Coin of Personalized Cancer Immunotherapy: A Focused Review on Rare Immune Checkpoint Related Adverse Effects

    Get PDF
    Immune checkpoint inhibitors (ICIs) are a type of cancer immunotherapy that has provided a tremendous breakthrough in the field of oncology. Currently approved checkpoint inhibitors target the cytotoxic T-lymphocyte-associated protein 4 (CTLA4), programmed death receptor-1 (PD-1), and programmed death-ligand 1(PD-L1). One of the most known complications of these advances is the emergence of a new spectrum of immune-related adverse events (irAEs). In this chapter, we will focus on selected rare or very rare irAEs, shedding the light on the other side of the coin of personalized cancer immunotherapy. We will also discuss general management approach of irAEs with an in-depth look on each one of these rare irAEs. The chapter will also cover principles of immunotherapy rechallenge post-occurrence of irAEs, and the impact of irAEs incidence on the efficacy of ICI. We will discuss some of the rare or very rare irAEs including cutaneous irAEs, immune-mediated Hypophysitis, hematological irAEs, ophthalmic irAEs, checkpoint inhibitor pneumonitis (CIP), neurologic irAEs, infectious irAEs, and cardiac irAEs. This chapter tried to highlight the significance of identifying emerging rare and very rare irAEs while considering initial assessments and management approaches identified in various clinical practice guideline and primary literature data

    The Immune System in Stroke

    Get PDF
    Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches

    Diosgenin alleviates D-galactose-induced oxidative stress in rats’ brain and liver targeting aging and apoptotic marker genes

    Get PDF
    The theory of aging is primarily concerned with oxidative stress caused by an imbalance in reactive oxygen species generation and cellular antioxidants. To alleviate the oxidative stress, we investigated the protective effect of diosgenin (DSG) for D-galactose (D-gal) using 20 and 40 mg of DSG/kg/day/orally for 42 days. The findings showed that D-gal caused brain and liver oxidative injuries by upregulating aging and oxidative markers. To counteract the oxidative stress caused by D-gal, DSG upregulated glutathione peroxidase-1, superoxide dismutase-1, and glutathione S-transferase-α. DSG also diminished the expression of p53, p21, Bcl-2-associated X protein, caspase-3, and mammalian target of rapamycin in brain and liver, as well as the build-up of β-galactosidase. DSG, in a dose-dependent manner, decreased the oxidative aging effects of D-gal in brain and liver tissues through targeting of aging and apoptotic marker genes. Finally, it should be noted that consuming DSG supplements is a suggesting natural preventative agent that may counteract aging and preserve health through improvement of body antioxidant status and control aging associated inflammation and cellular apoptosis

    Tig1 regulates proximo-distal identity during salamander limb regeneration

    Get PDF
    Salamander limb regeneration is an accurate process which gives rise exclusively to the missing structures, irrespective of the amputation level. This suggests that cells in the stump have an awareness of their spatial location, a property termed positional identity. Little is known about how positional identity is encoded, in salamanders or other biological systems. Through single-cell RNAseq analysis, we identified Tig1/Rarres1 as a potential determinant of proximal identity. Tig1 encodes a conserved cell surface molecule, is regulated by retinoic acid and exhibits a graded expression along the proximo-distal axis of the limb. Its overexpression leads to regeneration defects in the distal elements and elicits proximal displacement of blastema cells, while its neutralisation blocks proximo-distal cell surface interactions. Critically, Tig1 reprogrammes distal cells to a proximal identity, upregulating Prod1 and inhibiting Hoxa13 and distal transcriptional networks. Thus, Tig1 is a central cell surface determinant of proximal identity in the salamander limb

    Altered developmental programs and oriented cell divisions lead to bulky bones during salamander limb regeneration

    Get PDF
    There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore