223 research outputs found

    Altered H19/miR‐675 expression in skeletal muscle is associated with low muscle mass in community‐dwelling older adults

    Get PDF
    Background: Despite increasing knowledge of the pathogenesis of muscle ageing, the molecular mechanisms are poorly understood. Based on an expression analysis of muscle biopsies from older Caucasian men, we undertook an in-depth analysis of the expression of the long non-coding RNA, H19, to identify molecular mechanisms that may contribute to the loss of muscle mass with age. Methods: We carried out transcriptome analysis of vastus lateralis muscle biopsies from 40 healthy Caucasian men aged 68–76 years from the Hertfordshire Sarcopenia Study (HSS) with respect to appendicular lean mass adjusted for height (ALMi). Validation and replication was carried out using qRT-PCR in 130 independent male and female participants aged 73–83 years recruited into an extension of the HSS (HSSe). DNA methylation was assessed using pyrosequencing. Results: Lower ALMi was associated with higher muscle H19 expression (r2 = 0.177, P < 0.001). The microRNAs, miR-675-5p/3p encoded by exon 1 of H19, were positively correlated with H19 expression (Pearson r = 0.192 and 0.182, respectively, P < 0.03), and miR-675-5p expression negatively associated with ALMi (r2 = 0.629, P = 0.005). The methylation of CpGs within the H19 imprinting control region (ICR) were negatively correlated with H19 expression (Pearson r = −0.211 to −0.245, P ≤ 0.05). Moreover, RNA and protein levels of SMAD1 and 5, targets of miR-675-3p, were negatively associated with miR-675-3p (r2 = 0.792 and 0.760, respectively) and miR-675-5p (r2 = 0.584 and 0.723, respectively) expression, and SMAD1 and 5 RNA levels positively associated with greater type II fibre size (r2 = 0.184 and 0.246, respectively, P < 0.05). Conclusions: Increased expression profiles of H19/miR-675-5p/3p and lower expression of the anabolic SMAD1/5 effectors of bone morphogenetic protein (BMP) signalling are associated with low muscle mass in older individuals

    Phosphorus Mitigation to Control River Eutrophication: Murky Waters, Inconvenient Truths, and “Postnormal” Science

    Full text link
    This commentary examines an "inconvenient truth" that phosphorus (P)-based nutrient mitigation, long regarded as the key tool in eutrophication management, in many cases has not yet yielded the desired reductions in water quality and nuisance algal growth in rivers and their associated downstream ecosystems. We examine why the water quality and aquatic ecology have not recovered, in some case aft er two decades or more of reduced P inputs, including (i) legacies of past land-use management, (ii) decoupling of algal growth responses to river P loading in eutrophically impaired rivers; and (iii) recovery trajectories, which may be nonlinear and characterized by thresholds and alternative stable states. It is possible that baselines have shifted and that some disturbed river environments may never return to predisturbance conditions or may require P reductions below those that originally triggered ecological degradation. We discuss the practical implications of setting P-based nutrient criteria to protect and improve river water quality and ecology, drawing on a case study from the Red River Basin in the United States. We conclude that the challenges facing nutrient management and eutrophication control bear the hallmarks of "postnormal" science, where uncertainties are large, management intervention is urgently required, and decision stakes are high. We argue a case for a more holistic approach to eutrophication management that includes more sophisticated regime-based nutrient criteria and considers other nutrient and pollutant controls and river restoration (e.g., physical habitat and functional food web interactions) to promote more resilient water quality and ecosystem functioning along the land-freshwater continuum

    Scaling up: material culture as scaffold for the social brain

    Get PDF
    Many other species besides Homo sapiens are tool-users and even tool-makers, but one aspect of material culture still sets modern humans apart: our emotional and social engagement with objects. Here I argue that this engagement acted as a crucial scaffold for the scaling-up of human social networks beyond those of our closest relatives the chimpanzees to the global ‘small world’ of modern humans. Material culture plays a crucial role in conveying social information about relationships between people, places and things that extend geographically and temporally beyond the here and now – a role which allowed our ancestors to off-load some of the cognitive demands of maintaining such extensive social networks, and thereby surpass the limits to sociality imposed by neurology alone. Broad-scale developments in the archaeological record of the Lower Palaeolithic through to the early Neolithic are used to trace the process by which hominins and humans slowly scaled up their social worlds

    Studies on germ cells. I. The history of the germ cells in insects with special reference to the Keimbahn-determinants. II. The origin and significance of the Keimbahn-determinants in animals

    Full text link
    No Abstract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50235/1/1050250302_ftp.pd

    Evidence Informed Planning for Tourism

    Get PDF
    The purpose of this paper is to further advance the discussion regarding Local Authorities and approaches to facilitate sustainable planning for tourism. Building on previous research into tourism planning at local level in Ireland, this study employed qualitative semi-structured interviews with every senior planner in Ireland’s 28Local Authorities to identify the degree to which evidence-informed planning for tourism is encouraged. Findings point to a tendency from senior planners to rely on existing legislative procedures to measure tourism activity. Despite the legal responsibilities Local Authorities have to sustainably plan for tourism, together with substantial advancements in the development of procedures for facilitating evidence-informed planning for tourism. The absence of sufficient monitoring of several key tourism impacts at destination level by this study, questions the ability of senior planners in Ireland to plan sustainably for tourism and protect the tourism product going forward

    Of Europe

    Get PDF

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore