115 research outputs found

    Evaluation of enzymatic extract with lipase activity of yarrowia lipolytica. an application of data mining for the food industry wastewater treatment

    Get PDF
    The object of this research was to obtain the Crude Enzymatic Extract (CEE) of Yarrowia lipolytica ATCC 9773, in the medium of 30% Water of Sales (SW) applying a biologically treatment to three different concentrations yeast inoculum food wastewater, collected from cheese and whey production. It was evaluated the behavior of the inoculum in a suitable medium that stimulates lipids biodegradation. The standard liquid-liquid partition method SM 5520 B was used to quantify fat and oil removal for each concentration of yeast, before treatment and post treatment. The Industrial Fat effluent was characterized by physical chemical patterns, and two treatments were evaluated; Treatment 1 consisted of pH 5.0 and treatment 2 with a pH of 6.5, both with the following characteristics; Concentration of inoculum 8% 12% and 16% at 27Â °C temperature and evaluation time 32Â h. The best results (2.702Â mg/L fat and 83% degradation oil) were found to be pH 5.0, 16% concentration and 27Â °C, BOD5, and COD decreased by 43.07% and 44.35%, respectively during the 32Â h; For pH 6.5, 8% concentration at 32Â h and at room temperature, degraded 2.177Â mg/L fat and oil (67% degradation); The BOD5, and COD decreased by 37.93% and 39.19%, in the same time span. The treatment at pH 5.0 inoculum concentration of 16% was effective in removing 83% of the volume of fats and oil in the effluent, representing a useful tool for the wastewater treatment

    Low-value care practice in headache: a Spanish mixed methods research study

    Get PDF
    Background Headache is one of the most prevalent diseases. The Global Burden of Disease Study ranks it as the seventh most common disease overall and the second largest neurological cause of disability in the world. The "Do Not Do" recommendations are a strategy for increasing the quality of care and reducing the cost of care for headache. This study aimed to identify specific low-value practices in headache care, determine their frequency, and estimate the cost overrun that they represent, in order to establish "Do not Do" recommendations specifically for headache by consensus and according to scientific evidence. Methods This was a mixed methods research study that combined qualitative consensus-building techniques, involving a multidisciplinary panel of experts to define the "Do Not Do" recommendations in headache care, and a retrospective observational study with review of a randomized set of patient records from the past 6 months in four hospitals, to quantify the frequency of these "Do Not Do" practices. We calculated the sum of direct costs of medical consultations, medicines, and unnecessary diagnostic tests. Results Seven "Do Not Do" recommendations were established for headache. In total, 3507 medical records were randomly reviewed. Low-value practices had a highly variable occurrence, depending on the hospital and type of headache. Overall, 34.1% of low-value practices were related to treatment, 21% were related to overuse of imaging in consultation, and 19% were related to emergency care. The estimated cost of low-value practices in the four hospitals was 203,520.47 euros per 1000 patients. Conclusions This study identified low-value headache practices that need to be eradicated and provided data on their frequency and cost overruns

    Patient safety culture measurement in general practice. Clinimetric properties of 'SCOPE'

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A supportive patient safety culture is considered to be an essential condition for improving patient safety. Assessing the current safety culture in general practice may be a first step to target improvements. To that end, we studied internal consistency and construct validity of a safety culture questionnaire for general practice (SCOPE) which was derived from a comparable questionnaire for hospitals (Dutch-HSOPS).</p> <p>Methods</p> <p>The survey was conducted among caregivers of Dutch general practice as part of an ongoing quality accreditation process using a 46 item questionnaire. We conducted factor analyses and studied validity by calculating correlations between the subscales and testing the hypothesis that respondents' <it>patient safety grade </it>of their practices correlated with their scores on the questionnaire.</p> <p>Results</p> <p>Of 72 practices 294 respondents completed the questionnaire. Eight factors were identified concerning <it>handover and teamwork, support and fellowship, communication openness, feedback and learning from error, intention to report events, adequate procedures and staffing, overall perceptions of patient safety </it>and <it>expectations and actions of managers</it>. Cronbach's alpha of the factors rated between 0.64 and 0.85. The subscales intercorrelated moderately, except for the factor about intention to report events. Respondents who graded patient safety highly scored significantly higher on the questionnaire than those who did not.</p> <p>Conclusions</p> <p>The SCOPE questionnaire seems an appropriate instrument to assess patient safety culture in general practice. The clinimetric properties of the SCOPE are promising, but future research should confirm the factor structure and construct of the SCOPE and delineate its responsiveness to changes in safety culture over time.</p

    Pervasiveness of Parasites in Pollinators

    Get PDF
    Many pollinator populations are declining, with large economic and ecological implications. Parasites are known to be an important factor in the some of the population declines of honey bees and bumblebees, but little is known about the parasites afflicting most other pollinators, or the extent of interspecific transmission or vectoring of parasites. Here we carry out a preliminary screening of pollinators (honey bees, five species of bumblebee, three species of wasp, four species of hoverfly and three genera of other bees) in the UK for parasites. We used molecular methods to screen for six honey bee viruses, Ascosphaera fungi, Microsporidia, and Wolbachia intracellular bacteria. We aimed simply to detect the presence of the parasites, encompassing vectoring as well as actual infections. Many pollinators of all types were positive for Ascosphaera fungi, while Microsporidia were rarer, being most frequently found in bumblebees. We also detected that most pollinators were positive for Wolbachia, most probably indicating infection with this intracellular symbiont, and raising the possibility that it may be an important factor in influencing host sex ratios or fitness in a diversity of pollinators. Importantly, we found that about a third of bumblebees (Bombus pascuorum and Bombus terrestris) and a third of wasps (Vespula vulgaris), as well as all honey bees, were positive for deformed wing virus, but that this virus was not present in other pollinators. Deformed wing virus therefore does not appear to be a general parasite of pollinators, but does interact significantly with at least three species of bumblebee and wasp. Further work is needed to establish the identity of some of the parasites, their spatiotemporal variation, and whether they are infecting the various pollinator species or being vectored. However, these results provide a first insight into the diversity, and potential exchange, of parasites in pollinator communities

    Lutzomyia longipalpis urbanisation and control

    Full text link

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    Get PDF
    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0×1085.0\times {10}^{-8}. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74±0.05)s(+1.74\pm 0.05)\,{\rm{s}} between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between 3×1015-3\times {10}^{-15} and +7×1016+7\times {10}^{-16} times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
    corecore