18 research outputs found

    Deconstructing Stem Cell Tumorigenicity: A Roadmap to Safe Regenerative Medicine

    Get PDF
    Many of the earliest stem cell studies were conducted on cells isolated from tumors rather than from embryos. Of particular interest was research on embryonic carcinoma cells (EC), a type of stem cell derived from teratocarcinoma. The EC research laid the foundation for the later discovery of and subsequent work on embryonic stem cells (ESC). Both ESC isolated from the mouse (mESC) and then later from humans (hESC) shared not only pluripotency with their EC cousins, but also robust tumorigenicity as each readily form teratoma. Surprisingly, decades after the discovery of mESC, the question of what drives ESC to form tumors remains largely an open one. This gap in the field is particularly serious as stem cell tumorigenicity represents the key obstacle to the safe use of stem cell-based regenerative medicine therapies. Although some adult stem cell therapies appear to be safe, they have only a very narrow range of uses in human disease. Our understanding of the tumorigenicity of human induced pluripotent stem cells (IPSC), perhaps the most promising modality for future patient-specific regenerative medicine therapies, is rudimentary. However, IPSC are predicted to possess tumorigenic potential equal to or greater than that of ESC. Here, the links between pluripotency and tumorigenicity are explored. New methods for more accurately testing the tumorigenic potential of IPSC and of other stem cells applicable to regenerative medicine are proposed. Finally, the most promising emerging approaches for overcoming the challenges of stem cell tumorigenicity are highlighted

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Spatiotemporal Coherence-Based Annotation Placement for Surveillance Videos

    No full text

    Spatiotemporal Coherence-Based Annotation Placement for Surveillance Videos

    No full text
    In this paper, we propose a novel annotation placement approach for revealing information about foreground objects in surveillance videos. To arrange positions of annotations, spatiotemporal coherence between annotations and foreground objects is applied. The annotation placement problem is formulated as an optimization problem with respect to spatiotemporal coherence of annotations and foreground objects. The optimization problem is effectively solved using Markov random fields. To the best of our knowledge, this paper is the first work that discusses and solves the annotation placement problem for surveillance videos by considering the relationships between annotations and foreground objects with trajectories. As shown in the experiments, the proposed approach can arrange annotations based on the moving trajectories of foreground objects and prevent the occlusions between different annotations and foreground objects. It also achieves better quantitative and qualitative results compared with state-of-the-art approaches

    Driver Monitoring Using Sparse Representation With Part-Based Temporal Face Descriptors

    No full text
    Many driver monitoring systems (DMSs) have been proposed to reduce the risk of human-caused accidents. Traditional DMSs focus on detecting specific predefined abnormal driving behaviors, such as drowsiness or distracted driving, using generic models trained with the data collected during abnormal driving. However, it is difficult to collect sufficient representative training data to construct generic detection models, which are applicable to all drivers. Consequently, this paper proposes a new personal-based hierarchical DMS (HDMS). During driving, the first layer of the proposed HDMS detects normal and abnormal driving behavior based on normal personal driving models represented by sparse representations. When abnormal driving behavior is detected, the second layer of the HDMS further determines whether the behavior is drowsy driving behavior or distracted driving behavior. The experimental results obtained for three datasets show that the proposed HDMS outperforms existing state-of-the-art DMS methods in detecting normal driving behavior, drowsy driving behavior, and distracted driving behavior

    Hepatitis C virus E2 protein involve in insulin resistance through an impairment of Akt/PKB and GSK3β signaling in hepatocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C virus (HCV) infection may cause liver diseases of various severities ranging from primary acute infection to life-threatening diseases, such as cirrhosis or hepatocellular carcinoma with poor prognosis. According to clinical findings, HCV infection may also lead to some extra-hepatic symptoms, including type 2 diabetes mellitus (DM). Since insulin resistance is the major etiology for type 2 DM and numerous evidences showed that HCV infection associated with insulin resistance, the involvement of E2 in the pathogenesis of type 2 DM and underlying mechanisms were investigated in this study.</p> <p><b>Methods</b></p> <p>Reverse transcription and real-time PCR, Western blot assay, Immunoprecipitation, Glucose uptake assay and analysis of cellular glycogen content.</p> <p>Results</p> <p>Results showed that E2 influenced on protein levels of insulin receptor substrate-1 (IRS-1) and impaired insulin-induced Ser308 phosphorylation of Akt/PKB and Ser9 phosphorylation of GSK3β in Huh7 cells, leading to an inhibition of glucose uptake and glycogen synthesis, respectively, and eventually insulin resistance.</p> <p>Conclusions</p> <p>Therefore, HCV E2 protein indeed involved in the pathogenesis of type 2 DM by inducing insulin resistance.</p
    corecore