825 research outputs found

    Sharp Global Bounds for the Hessian on Pseudo-Hermitian Manifolds

    Full text link
    We find sharp bounds for the norm inequality on a Pseudo-hermitian manifold, where the L^2 norm of all second derivatives of the function involving horizontal derivatives is controlled by the L^2 norm of the sub-Laplacian. Perturbation allows us to get a-priori bounds for solutions to sub-elliptic PDE in non-divergence form with bounded measurable coefficients. The method of proof is through a Bochner technique. The Heisenberg group is seen to be en extremal manifold for our inequality in the class of manifolds whose Ricci curvature is non-negative.Comment: 13 page

    Finite volume approach for the instationary Cosserat rod model describing the spinning of viscous jets

    Full text link
    The spinning of slender viscous jets can be described asymptotically by one-dimensional models that consist of systems of partial and ordinary differential equations. Whereas the well-established string models possess only solutions for certain choices of parameters and set-ups, the more sophisticated rod model that can be considered as ϵ\epsilon-regularized string is generally applicable. But containing the slenderness ratio ϵ\epsilon explicitely in the equations complicates the numerical treatment. In this paper we present the first instationary simulations of a rod in a rotational spinning process for arbitrary parameter ranges with free and fixed jet end, for which the hitherto investigations longed. So we close an existing gap in literature. The numerics is based on a finite volume approach with mixed central, up- and down-winded differences, the time integration is performed by stiff accurate Radau methods

    Morpho-Kinematic Properties of the 21-Micron Source IRAS 07134+1005

    Get PDF
    We report the results of a Submillimeter Array (SMA) interferometric observation of 21-micron source IRAS 07134+1005 in the CO J=3-2 line. In order to determine the morpho-kinematic properties of the molecular envelope of the object, we constructed a model using the Shape software to model the observed CO map. We find that the molecular gas component of the envelopes can be interpreted as a geometrically thick expanding torus with an expanding velocity of 8 km/s. The inner and outer radii of the torus determined by fitting Shape models are 1.2" and 3.0", respectively. The inner radius is consistent with the previous values determined by radiative transfer modeling of the spectral energy distribution and mid-infrared imaging of the dust component. The radii and expansion velocity of the torus suggest that the central star has left the asymptotic giant branch about 1140-1710 years ago, and that the duration of the equatorial enhanced mass loss is about 2560-3130 years. From the absence of an observed jet, we suggest that the formation of a bipolar outflow may lack behind in time from the creation of the equatorial torus.Comment: 20 pages, 8 figures; accepted for publication in ApJ; Full resolution version available at http://web.hku.hk/~junichi/paper

    A discrete geometric approach for simulating the dynamics of thin viscous threads

    Full text link
    We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematical constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistency of the discrete model with the classical, smooth equations is established formally in the limit of a vanishing discretization length. The discrete models lends itself naturally to numerical implementation. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous jets in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension

    Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    Get PDF
    Despite the importance of deep-sea corals, our current understanding of their ecology and evolutionis limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent reevaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea. As such, our data provides direction for future research and further insight to organismal response of deep sea coral to environmental change and ocean warming.Tis work was supported by King Abdullah University of Science and Technology (KAUST), baseline funds to CRV and Center Competitive Funding (CCF) Program FCC/1/1973-18-01

    Redox regulation of cell proliferation: Bioinformatics and redox proteomics approaches to identify redox-sensitive cell cycle regulators

    No full text
    Plant stem cells are the foundation of plant growth and development. The balance of quiescence and division is highly regulated, while ensuring that proliferating cells are protected from the adverse effects of environment fluctuations that may damage the genome. Redox regulation is important in both the activation of proliferation and arrest of the cell cycle upon perception of environmental stress. Within this context, reactive oxygen species serve as ‘pro-life’ signals with positive roles in the regulation of the cell cycle and survival. However, very little is known about the metabolic mechanisms and redox-sensitive proteins that influence cell cycle progression. We have identified cysteine residues on known cell cycle regulators in Arabidopsis that are potentially accessible, and could play a role in redox regulation, based on secondary structure and solvent accessibility likelihoods for each protein. We propose that redox regulation may function alongside other known posttranslational modifications to control the functions of core cell cycle regulators such as the retinoblastoma protein. Since our current understanding of how redox regulation is involved in cell cycle control is hindered by a lack of knowledge regarding both which residues are important and how modification of those residues alters protein function, we discuss how critical redox modifications can be mapped at the molecular level

    Search for High-Mass Resonances Decaying to τν in pp Collisions at √s=13 TeV with the ATLAS Detector

    Get PDF
    A search for high-mass resonances decaying to τν using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τν production cross section. Heavy W′ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level

    Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A measurement of the production cross section for two isolated photons in proton-proton collisions at a center-of-mass energy of √s=8 TeV is presented. The results are based on an integrated luminosity of 20.2 fb−1 recorded by the ATLAS detector at the Large Hadron Collider. The measurement considers photons with pseudorapidities satisfying |ηγ|40GeV and EγT,2>30 GeV for the two leading photons ordered in transverse energy produced in the interaction. The background due to hadronic jets and electrons is subtracted using data-driven techniques. The fiducial cross sections are corrected for detector effects and measured differentially as a function of six kinematic observables. The measured cross section integrated within the fiducial volume is 16.8 ± 0.8  pb . The data are compared to fixed-order QCD calculations at next-to-leading-order and next-to-next-to-leading-order accuracy as well as next-to-leading-order computations including resummation of initial-state gluon radiation at next-to-next-to-leading logarithm or matched to a parton shower, with relative uncertainties varying from 5% to 20%
    corecore