3,341 research outputs found

    Differential Proper-Motion Study of the Circumstellar Dust Shell of the Enigmatic Object, HD 179821

    Full text link
    HD179821 is an enigmatic evolved star that possesses characteristics of both a post-asymptotic giant branch star and a yellow hyper-giant, and there has been no evidence that unambiguously defines its nature. These two hypotheses are products of an indeterminate distance, presumed to be 1 kpc or 6 kpc. We have obtained the two-epoch Hubble Space Telescope WFPC2 data of its circumstellar shell, which shows multiple concentric arcs extending out to about 8 arcsec. We have performed differential proper-motion measurements on distinct structures within the circumstellar shell of this mysterious star in hopes of determining the distance to the object, and thereby distinguishing the nature of this enigmatic stellar source. Upon investigation, rather than azimuthal radially symmetric expansion, we discovered a bulk motion of the circumstellar shell of (2.41+-0.43, 2.97+-0.32) mas/yr. This corresponded to a translational ISM flow of (1.28+-0.95, 7.27+-0.75) mas/yr local to the star. This finding implies that the distance to HD 179821 should be rather small in order for its circumstellar shell to preserve its highly intact spherical structure in the presence of the distorting ISM flow, therefore favoring the proposition that HD 179821 is a post-AGB object.Comment: Accepted for publication in ApJ

    Cometary Astropause of Mira Revealed in the Far-Infrared

    Full text link
    Evolved mass-losing stars such as Mira enrich the interstellar medium (ISM) significantly by their dust-rich molecular wind. When these stars move fast enough relative to the ISM, the interaction between the wind and ISM generates the structure known as the astropause (a stellar analog of the heliopause), which is a cometary stellar wind cavity bounded by the contact discontinuity surface between the wind and ISM. Far-infrared observations of Mira spatially resolve the structure of its astropause for the first time, distinguishing the contact surface between Mira's wind and the ISM and the termination shock due to Mira's wind colliding with the ISM. The physical size of the astropause and the estimated speed of the termination shock suggest the age of the astropause to be about 40,000 yr, confirming a theoretical prediction of the shock re-establishment time after Mira has entered the Local Bubble.Comment: 9 pages including 2 figures. To appear in the Astrophysical Journal Letter

    Capital depreciation and waste accumulation in capital-resource economies

    Get PDF
    In this note, we investigate how the depreciation of a manufactured stock and the related accumulation of a waste stock can alter the optimal path of the capital-resource economy. It is shown that the optimal consumption path is aected by how the disuse pattern of the manufactured stock in question is distributed, specifically with forward-looking terms.capital depreciation; waste accumulation; capital-resource model; optimal control

    Entangled-photon generation in nano-to-bulk crossover regime

    Full text link
    We have theoretically investigated a generation of entangled photons from biexcitons in a semiconductor film with thickness in nano-to-bulk crossover regime. In contrast to the cases of quantum dots and bulk materials, we can highly control the generated state of entangled photons by the design of peculiar energy structure of exciton-photon coupled modes in the thickness range between nanometers and micrometers. Owing to the enhancement of radiative decay rate of excitons at this thickness range, the statistical accuracy of generated photon pairs can be increased beyond the trade-off problem with the signal intensity. Implementing an optical cavity structure, the generation efficiency can be enhanced with keeping the high statistical accuracy.Comment: 9 pages, 3 figure

    Evidence of grain growth in the disk of the bipolar proto-planetary nebula M 1--92

    Full text link
    We investigate the dust size and dust shell structure of the bipolar proto-planetary nebula M 1--92 by means of radiative transfer modeling. Our models consists of a disk and bipolar lobes that are surrounded by an AGB shell, each component having different dust characteristics. The upper limit of the grain size amaxa_\mathrm{max} in the lobes is estimated to be 0.5μ0.5 \mum from the polarization value in the bipolar lobe. The amaxa_\mathrm{max} value of the disk is constrained with the disk mass (0.2 M_{\sun}), which was estimated from a previous CO emission line observation. We find a good model with amax=1000.0μa_\mathrm{max}=1000.0 \mum, which provides an approximated disk mass of 0.15 M_{\sun}. Even taking into account uncertainties such as the gas-to-dust mass ratio, a significantly larger dust of amax>100.0μa_\mathrm{max}>100.0 \mum, comparing to the dust in the lobe, is expected. We also estimated the disk inner radius, the disk outer radius, and the envelope mass to be 30 R⋆R_\star(=9 AU), 4500 AU, and 4 M_{\sun}, respectively, where vexpv_\mathrm{exp} is the expansion velocity. If the dust existing in the lobes in large separations from the central star undergoes little dust processing, the dust sizes preserves the ones in the dust formation. Submicron-sized grains are found in many objects besides M 1--92, suggesting that the size does not depend much on the object properties, such as initial mass of the central star and chemical composition of the stellar system. On the other hand, the grain sizes in the disk do. Evidence of large grains has been reported in many bipolar PPNs, including M 1--92. This result suggests that disks play an important role in grain growth.Comment: 8 pages with 3 figures. Accepted for publication in A&
    • …
    corecore