525 research outputs found

    Linear Rotary Optical Delay Lines

    Full text link
    I present several classes of analytical and semi-analytical solutions for the design of high-speed rotary optical delay lines that use a combination of stationary and rotating curvilinear reflectors. Detailed analysis of four distinct classes of optical delay lines is presented. Particularly, I consider delay lines based on a single rotating reflector, a single rotating reflector and a single stationary reflector, two rotating reflectors, and two rotating reflectors and a single stationary reflector. I demonstrate that in each of these cases it is possible to design an infinite variety of the optical delay lines featuring linear dependence of the optical delay on the rotation angle. This is achieved via optimization of the shapes of rotating and stationary reflector surfaces. Moreover, in the case of two rotating reflectors a convenient spatial separation of the incoming and outgoing beams is possible. For the sake of example, all the blades presented in this paper are chosen to fit into a circle of 10cm diameter and these delay lines feature in excess of 600ps of optical delay

    Non-perturbative approach to high-index-contrast variations in electromagnetic systems

    Full text link
    We present a method that formally calculates \emph{exact} frequency shifts of an electromagnetic field for arbitrary changes in the refractive index. The possible refractive index changes include both anisotropic changes and boundary shifts. Degenerate eigenmode frequencies pose no problems in the presented method. The approach relies on operator algebra to derive an equation for the frequency shifts, which eventually turn out in a simple and physically sound form. Numerically the equations are well-behaved, easy implementable, and can be solved very fast. Like in perturbation theory a reference system is first considered, which then subsequently is used to solve another related, but different system. For our method precision is only limited by the reference system basis functions and the error induced in frequency is of second order for first-order basis set error. As an example we apply our method to the problem of variations in the air-hole diameter in a photonic crystal fiber.Comment: Accepted for Opt. Commu

    Liquid-core low-refractive-index-contrast Bragg fiber sensor

    Full text link
    We propose and experimentally demonstrate a low-refractive-index-contrast hollow-core Bragg fiber sensor for liquid analyte refractive index detection. The sensor operates using a resonant sensing principle- when the refractive index of a liquid analyte in the fiber core changes, the resonant confinement of the fiber guided mode will also change, leading to both the spectral shifts and intensity changes in fiber transmission. As a demonstration, we characterize the Bragg fiber sensor using a set of NaCl solutions with different concentrations. Strong spectral shifts are obtained with the sensor experimental sensitivity found to be ~1400nm/RIU (refractive index unit). Besides, using theoretical modeling we show that low-refractive-index-contrast Bragg fibers are more suitable for liquid-analyte sensing applications than their high-refractive-index-contrast counterparts.Comment: 3 pages, 4 figure

    Diagrammatic Explanation of the Reverse Doppler Effect in Space-Time Modulated Photonic Crystals

    Full text link
    An inverse Doppler shift occurs in a photonic crystal (PC) bounded by a moving wall. The interpretation of this result has stirred some controversy. In this paper, we address the problem using a diagrammatic approach. This visual representation provides immediate insight into the phenomenon, and is a powerful tool for the design of time-varying PCs.Comment: Submitted to 2016 AP-S Symposium. 2 pages, 2 figure
    • …
    corecore