65 research outputs found

    High-Fidelity Spacecraft Thermal Modeling: Synthesis of STK, SPENVIS, MATLAB, Simulink, and Thermal Desktop using Model-Based Systems Engineering

    Get PDF
    Verification and Validation (V&V) by analysis for required spacecraft Heater Wattage (HW) and Radiator Area (RA) is a rigorous, iterative procedure highly dependent on spacecraft areas, surface absorptivity, surface emissivity, orbital position, orbital attitude, and operational heat generation. The Alabama Burst Energetics eXplorer (ABEX) mission adopts a Model-Based Systems Engineering (MBSE) approach to analysis wherein model strengths and weaknesses are considered synergistically and integrated using SysML parametric and structural diagrams to create a System of Models (SoM). In this work, a procedure for comprehensive spacecraft thermal modeling is detailed using MBSE-centric Modeling and Simulation (M&S) practices. The SysML model is used as a foundational data source for all other models, and non-SysML model exports are provided back to the SysML model in useful format. Because the analytical models in Systems Tool Kit (STK), MATLAB, Simulink, Thermal Desktop, and the Space Environment Information System (SPENVIS) are sourcing input data only from the SysML model, V&V for input data pedigree is only required in SysML for the purposes of National Aeronautics and Space Administration (NASA)-STD-7009: Standard for Models & Simulations, saving valuable program schedule time. Common of many thermal analysis approaches, a low-fidelity, isothermal model is first developed in MATLAB to provide environmental calculations and preliminary HW and RA values to a higher-fidelity model, here developed in Simulink. The non-isothermal Simulink model results inform a Thermal Desktop model, which is used as the basis for qualification-level hardware development. In the analytical models, STK simulates spacecraft modes of operation and communication profiles to export transient spacecraft position and velocity state vectors, solar position state vectors, Earth position state vectors, and unit vectors orthogonal to each spacecraft face, among non-thermal data. An orbital model in SPENVIS produces corpuscular radiation integral flux data for the determination of Charged Particle Heating (CPH), and the MATLAB model imports the STK and SPENVIS data. In MATLAB, heat fluxes from direct solar emission, Earth emission, Earth albedo, CPH, and Free Molecular Heating (FMH) are calculated and converted to absorbed heat values; radiation surface reflectivity is calculated using specular, spectral Fresnel relationships accounting for complex, spectral refractive indices of both the spacecraft surface coating material and base layer material, surface coating material thickness, and radiation Angle of Incidence (AOI). The MATLAB model utilizes an isothermal energy balance to output a low-fidelity HW and RA value required to stay above and below component operational temperatures, respectively. In Simulink, component thermal capacitances are distributed in a thermal resistance network with each discrete spacecraft component considered isothermal; absorbed heat and advanced reflectivity calculations are also recalculated per component. An array of values is generated for both HW and RA between zero and twice the value provided by the MATLAB isothermal model to create a matrix of potential HW and RA combinations. The Simulink model determines an operational envelope of viable HW and RA combinations for user-defined heater and radiator locations; acceptable HW and RA combinations are those that result in component temperatures within operational boundaries. The HW and RA combinations at the edges of the Simulink-derived operational envelope are provided to a three-dimensional, geometry-specific Thermal Desktop model wherein high-fidelity HW and RA values can be analyzed specific to mounting considerations. In this SoM progression from MATLAB to Simulink to Thermal Desktop driven by data inputs from STK and SPENVIS with a central source of truth for all models based in SysML, uncertainty and risk regarding thermal control analysis results are systematically mitigated

    TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain

    Get PDF
    Background: The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders. Methods: Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour. Results: We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity. Conclusions: These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response

    Bone Marrow Concentrate (BMC) Therapy in Musculoskeletal Disorders: Evidence-Based Policy Position Statement of American Society of Interventional Pain Physicians (ASIPP)

    Get PDF
    BACKGROUND: The use of bone marrow concentrate (BMC) for treatment of musculoskeletal disorders has become increasingly popular over the last several years, as technology has improved along with the need for better solutions for these pathologies. The use of cellular tissue raises a number of issues regarding the US Food and Drug Administration\u27s (FDA) regulation in classifying these treatments as a drug versus just autologous tissue transplantation. In the case of BMC in musculoskeletal and spine care, this determination will likely hinge on whether BMC is homologous to the musculoskeletal system and spine. OBJECTIVES: The aim of this review is to describe the current regulatory guidelines set in place by the FDA, specifically the terminology around minimal manipulation and homologous use within Regulation 21 CFR Part 1271, and specifically how this applies to the use of BMC in interventional musculoskeletal medicine. METHODS: The methodology utilized here is similar to the methodology utilized in preparation of multiple guidelines employing the experience of a panel of experts from various medical specialties and subspecialties from differing regions of the world. The collaborators who developed these position statements have submitted their appropriate disclosures of conflicts of interest. Trustworthy standards were employed in the creation of these position statements. The literature pertaining to BMC, its effectiveness, adverse consequences, FDA regulations, criteria for meeting the standards of minimal manipulation, and homologous use were comprehensively reviewed using a best evidence synthesis of the available and relevant literature. RESULTS/Summary of Evidence: In conjunction with evidence-based medicine principles, the following position statements were developed: Statement 1: Based on a review of the literature in discussing the preparation of BMC using accepted methodologies, there is strong evidence of minimal manipulation in its preparation, and moderate evidence for homologous utility for various musculoskeletal and spinal conditions qualifies for the same surgical exemption. Statement 2: Assessment of clinical effectiveness based on extensive literature shows emerging evidence for multiple musculoskeletal and spinal conditions. ‱ The evidence is highest for knee osteoarthritis with level II evidence based on relevant systematic reviews, randomized controlled trials and nonrandomized studies. There is level III evidence for knee cartilage conditions. ‱ Based on the relevant systematic reviews, randomized trials, and nonrandomized studies, the evidence for disc injections is level III. ‱ Based on the available literature without appropriate systematic reviews or randomized controlled trials, the evidence for all other conditions is level IV or limited for BMC injections. Statement 3: Based on an extensive review of the literature, there is strong evidence for the safety of BMC when performed by trained physicians with the appropriate precautions under image guidance utilizing a sterile technique. Statement 4: Musculoskeletal disorders and spinal disorders with related disability for economic and human toll, despite advancements with a wide array of treatment modalities. Statement 5: The 21st Century Cures Act was enacted in December 2016 with provisions to accelerate the development and translation of promising new therapies into clinical evaluation and use. Statement 6: Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders and spine. With mixed results, these therapies are greatly outpacing the evidence. The reckless publicity with unsubstantiated claims of beneficial outcomes having putative potential, and has led the FDA Federal Trade Commission (FTC) to issue multiple warnings. Thus the US FDA is considering the appropriateness of using various therapies, including BMC, for homologous use. Statement 7: Since the 1980\u27s and the description of mesenchymal stem cells by Caplan et al, (now called medicinal signaling cells), the use of BMC in musculoskeletal and spinal disorders has been increasing in the management of pain and promoting tissue healing. Statement 8: The Public Health Service Act (PHSA) of the FDA requires minimal manipulation under same surgical procedure exemption. Homologous use of BMC in musculoskeletal and spinal disorders is provided by preclinical and clinical evidence. Statement 9: If the FDA does not accept BMC as homologous, then it will require an Investigational New Drug (IND) classification with FDA (351) cellular drug approval for use. Statement 10: This literature review and these position statements establish compliance with the FDA\u27s intent and corroborates its present description of BMC as homologous with same surgical exemption, and exempt from IND, for use of BMC for treatment of musculoskeletal tissues, such as cartilage, bones, ligaments, muscles, tendons, and spinal discs. CONCLUSIONS: Based on the review of all available and pertinent literature, multiple position statements have been developed showing that BMC in musculoskeletal disorders meets the criteria of minimal manipulation and homologous use. KEY WORDS: Cell-based therapies, bone marrow concentrate, mesenchymal stem cells, medicinal signaling cells, Food and Drug Administration, human cells, tissues, and cellular tissue-based products, Public Health Service Act (PHSA), minimal manipulation, homologous use, same surgical procedure exemption

    From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    Get PDF
    Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted

    Metabolic syndrome: definitions and controversies

    Get PDF
    Metabolic syndrome (MetS) is a complex disorder defined by a cluster of interconnected factors that increase the risk of cardiovascular atherosclerotic diseases and diabetes mellitus type 2. Currently, several different definitions of MetS exist, causing substantial confusion as to whether they identify the same individuals or represent a surrogate of risk factors. Recently, a number of other factors besides those traditionally used to define MetS that are also linked to the syndrome have been identified. In this review, we critically consider existing definitions and evolving information, and conclude that there is still a need to develop uniform criteria to define MetS, so as to enable comparisons between different studies and to better identify patients at risk. As the application of the MetS model has not been fully validated in children and adolescents as yet, and because of its alarmingly increasing prevalence in this population, we suggest that diagnosis, prevention and treatment in this age group should better focus on established risk factors rather than the diagnosis of MetS

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor

    Get PDF
    Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6’s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. Finally, we discuss some aspects of Pax6’s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6’s known direct targets which mediate its actions during cortical development

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p
    • 

    corecore