3,398 research outputs found

    The Emergence of Human Consciousness: From Fetal to Neonatal Life

    Get PDF
    A simple definition of consciousness is sensory awareness of the body, the self, and the world. The fetus may be aware of the body, for example by perceiving pain. It reacts to touch, smell, and sound, and shows facial expressions responding to exter- nal stimuli. However, these reactions are probably preprogrammed and have a subcortical nonconscious origin. Furthermore, the fetus is almost continuously asleep and unconscious partially due to endog- enous sedation. Conversely, the newborn infant can be awake, exhibit sensory awareness, and process memorized mental representations. It is also able to differentiate between self and nonself touch, express emotions, and show signs of shared feelings. Yet, it is unreflective, present oriented, and makes little reference to concept of him/herself. Newborn infants display features characteristic of what may be referred to as basic consciousness and they still have to undergo considerable maturation to reach the level of adult consciousness. The preterm infant, ex utero, may open its eyes and establish minimal eye contact with its mother. It also shows avoidance reactions to harmful stimuli. However, the thalamocortical connections are not yet fully established, which is why it can only reach a minimal level of consciousness

    Conductance increases produced by bath application of cholinergic agonists to Electrophorus electroplaques

    Get PDF
    When solutions containing agonists are applied to the innervated face of an Electrophorus electroplaque, the membrane's conductance increases. The agonist-induced conductance is increased at more negative membrane potentials. The "instantaneous" current-voltage curve for agonist-induced currents is linear and shows a reversal potential near zero mV; chord conductances, calculated on the basis of this reversal potential, change epsilon-fold for every 62-mV change in potential when the conductance is small. Conductance depends non- linearly on small agonist concentrations; at all potentials, the dose-response curve has a Hill coefficient of 1.45 for decamethonium (Deca) and 1.90 for carbamylcholine (Carb). With agonist concentrations greater than 10^(-4) M Carb or 10^(-5) M Deca, the conductance rises to a peak 0.5-1.5 min after introduction of agonist, then declines with time; this effect resembles the "desensitization" reported for myoneural junctions. Elapid alpha-toxin, tubocurarine, and desensitization reduce the conductance without changing the effects of potential; the apparent dissociation constant for tubocurarine is 2 X 10^(-7) M. By contrast, procaine effects a greater fractional inhibition of the conductance at high negative potentials

    Com es comuniquen les cèl·lules

    Get PDF

    Conformational selection or induced fit? 50 years of debate resolved

    Get PDF
    Exactly 50 years ago, biochemists raised the question of the mechanism of the conformational change that mediates “allosteric” interactions between regulatory sites and biologically active sites in regulatory/receptor proteins. Do the different conformations involved already exist spontaneously in the absence of the regulatory ligands (Monod-Wyman-Changeux), such that the complementary protein conformation would be selected to mediate signal transduction, or do particular ligands induce the receptor to adopt the conformation best suited to them (Koshland-Nemethy-Filmer—induced fit)? This is not just a central question for biophysics, it also has enormous importance for drug design. Recent advances in techniques have allowed detailed experimental and theoretical comparisons with the formal models of both scenarios. Also, it has been shown that mutated receptors can adopt constitutively active confirmations in the absence of ligand. There have also been demonstrations that the atomic resolution structures of the same protein are essentially the same whether ligand is bound or not. These and other advances in past decades have produced a situation where the vast majority of the data using different categories of regulatory proteins (including regulatory enzymes, ligand-gated ion channels, G protein-coupled receptors, and nuclear receptors) support the conformational selection scheme of signal transduction

    Time-lapse total internal reflection fluorescence video of acetylcholine receptor cluster formation on myotubes

    Full text link
    To study when and where acetylcholine receptor (AChR) clusters appear on developing rat myotubes in primary culture, we have made time-lapse movies of total internal reflection fluorescence (TIRF) overlaid with schlieren transmitted light images. The receptors, including the ones newly incorporated into the membrane, were labeled with rhodamine Α-bungarotoxin (R-BT) continuously present in the medium. Since TIRF illuminates only cell-substrate contact regions where almost all of the AChR clusters are located, background fluorescence from fluorophores either in the bulk solution or inside the cells can be suppressed. Also, because TIRF minimizes the exposure of the cell interior to light, the healthy survival of the cell culture during imaging procedures is much enhanced relative to standard epi- (or trans-) illumination. During the experiment, cells were kept alive on the microscope stage at 37°C in an atmosphere of 10% CO 2· Two digital images were recorded by a CCD camera every 20 min: the schlieren image of the cells and the TIRF image of the clusters. After background subtraction, the cluster image was displayed in pseudocolors, overlaid onto the cell images, and recorded as 3 frames on a videotape. The final movies are thus able to summarize a week-long experiment in less than a minute. These movies and images show that clusters form often shortly after the myoblast fusion but sometimes much later, and the formation takes place very rapidly (a few hours). The clusters have an average lifetime of around a day, much shorter than the lifetime of a typical myotube. The brightest and largest clusters tend to be the longest-lived. The cluster formation seems to be associated with the contacts of myotubes at the glass substrate, but not with cell-cell contacts or myoblast fusion into myotubes. New AChR continuously appear in preexisting clusters: after photobleaching, the fluorescence of some clusters recovers within an hour. © 1994 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50420/1/1002010104_ftp.pd

    On the excitability and cooperativity of the electroplax membrane.

    Full text link

    Ongoing Spontaneous Activity Controls Access to Consciousness: A Neuronal Model for Inattentional Blindness

    Get PDF
    Even in the absence of sensory inputs, cortical and thalamic neurons can show structured patterns of ongoing spontaneous activity, whose origins and functional significance are not well understood. We use computer simulations to explore the conditions under which spontaneous activity emerges from a simplified model of multiple interconnected thalamocortical columns linked by long-range, top-down excitatory axons, and to examine its interactions with stimulus-induced activation. Simulations help characterize two main states of activity. First, spontaneous gamma-band oscillations emerge at a precise threshold controlled by ascending neuromodulator systems. Second, within a spontaneously active network, we observe the sudden “ignition” of one out of many possible coherent states of high-level activity amidst cortical neurons with long-distance projections. During such an ignited state, spontaneous activity can block external sensory processing. We relate those properties to experimental observations on the neural bases of endogenous states of consciousness, and particularly the blocking of access to consciousness that occurs in the psychophysical phenomenon of “inattentional blindness,” in which normal subjects intensely engaged in mental activity fail to notice salient but irrelevant sensory stimuli. Although highly simplified, the generic properties of a minimal network may help clarify some of the basic cerebral phenomena underlying the autonomy of consciousness
    corecore