2,963 research outputs found

    Improved Bounds for rr-Identifying Codes of the Hex Grid

    Full text link
    For any positive integer rr, an rr-identifying code on a graph GG is a set C⊂V(G)C\subset V(G) such that for every vertex in V(G)V(G), the intersection of the radius-rr closed neighborhood with CC is nonempty and pairwise distinct. For a finite graph, the density of a code is ∣C∣/∣V(G)∣|C|/|V(G)|, which naturally extends to a definition of density in certain infinite graphs which are locally finite. We find a code of density less than 5/(6r)5/(6r), which is sparser than the prior best construction which has density approximately 8/(9r)8/(9r).Comment: 12p

    Social interaction of cancer survivors in Malta : a sociological analysis

    Get PDF
    This research analyzes social interaction of cancer patients in Malta. In particular it applies a qualitative sociological approach to verify how cancer patients interact with family members and society. The research concludes that social interaction of cancer survivors in Malta is characterized by mixed experiences, but at the same time, all cancer patients emphasize the importance of family support. A major finding is that cancer patients do not simply receive support from family members, but also provide it themselves to their relatives. This is not an intended effect of cancer survivorship, but nevertheless it helps strengthen social bonds within families of cancer patients.peer-reviewe

    On two variations of identifying codes

    Full text link
    Identifying codes have been introduced in 1998 to model fault-detection in multiprocessor systems. In this paper, we introduce two variations of identifying codes: weak codes and light codes. They correspond to fault-detection by successive rounds. We give exact bounds for those two definitions for the family of cycles

    Characterizing extremal digraphs for identifying codes and extremal cases of Bondy's theorem on induced subsets

    Full text link
    An identifying code of a (di)graph GG is a dominating subset CC of the vertices of GG such that all distinct vertices of GG have distinct (in)neighbourhoods within CC. In this paper, we classify all finite digraphs which only admit their whole vertex set in any identifying code. We also classify all such infinite oriented graphs. Furthermore, by relating this concept to a well known theorem of A. Bondy on set systems we classify the extremal cases for this theorem

    On the size of identifying codes in triangle-free graphs

    Get PDF
    In an undirected graph GG, a subset C⊆V(G)C\subseteq V(G) such that CC is a dominating set of GG, and each vertex in V(G)V(G) is dominated by a distinct subset of vertices from CC, is called an identifying code of GG. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given identifiable graph GG, let \M(G) be the minimum cardinality of an identifying code in GG. In this paper, we show that for any connected identifiable triangle-free graph GG on nn vertices having maximum degree Δ≥3\Delta\geq 3, \M(G)\le n-\tfrac{n}{\Delta+o(\Delta)}. This bound is asymptotically tight up to constants due to various classes of graphs including (Δ−1)(\Delta-1)-ary trees, which are known to have their minimum identifying code of size n−nΔ−1+o(1)n-\tfrac{n}{\Delta-1+o(1)}. We also provide improved bounds for restricted subfamilies of triangle-free graphs, and conjecture that there exists some constant cc such that the bound \M(G)\le n-\tfrac{n}{\Delta}+c holds for any nontrivial connected identifiable graph GG
    • …
    corecore