113 research outputs found

    CHALLENGES IN ANAESTHESIA DURING SPACE EXPLORATION MISSIONS

    Get PDF

    The Sight Loss and Vision Priority Setting Partnership (SLV-PSP): overview and results of the research prioritisation survey process

    Get PDF
    Objectives: The Sight Loss and Vision Priority Setting Partnership aimed to identify research priorities relating to sight loss and vision through consultation with patients, carers and clinicians. These priorities can be used to inform funding bodies’ decisions and enhance the case for additional research funding. Design: Prospective survey with support from the James Lind Alliance. Setting: UK-wide National Health Service (NHS) and non-NHS. Participants: Patients, carers and eye health professionals. Academic researchers were excluded solely from the prioritisation process. The survey was disseminated by patient groups, professional bodies, at conferences and through the media, and was available for completion online, by phone, by post and by alternative formats (Braille and audio). Outcome measure: People were asked to submit the questions about prevention, diagnosis and treatment of sight loss and eye conditions that they most wanted to see answered by research. Returned survey questions were reviewed by a data assessment group. Priorities were established across eye disease categories at final workshops. Results: 2220 people responded generating 4461 submissions. Sixty-five per cent of respondents had sight loss and/or an eye condition. Following initial data analysis, 686 submissions remained which were circulated for interim prioritisation (excluding cataract and ocular cancer questions) to 446 patients/carers and 218 professionals. The remaining 346 questions were discussed at final prioritisation workshops to reach agreement of top questions per category. Conclusions: The exercise engaged a diverse community of stakeholders generating a wide range of conditions and research questions. Top priority questions were established across 12 eye disease categories. This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial

    Gluteal muscle atrophy and increased intramuscular lipid concentration are not mitigated by daily artificial gravity following 60-day head-down tilt bed rest

    Get PDF
    Exposure to spaceflight and head-down tilt (HDT) bed rest leads to decreases in the mass of the gluteal muscle. Preliminary results have suggested that interventions, such as artificial gravity (AG), can partially mitigate some of the physiological adaptations induced by HDT bed rest. However, its effect on the gluteal muscles is currently unknown. This study investigated the effects of daily AG on the gluteal muscles during 60-day HDT bed rest. Twenty-four healthy individuals participated in the study: eight received 30 minutes of continuous AG; eight received 6x5 minutes of AG, interspersed with rest periods; eight belonged to a control group. T1-Weighted Dixon magnetic resonance imaging of the hip region was conducted at baseline and day 59 of HDT bed rest to establish changes in volumes and intramuscular lipid concentration (ILC). Results showed that, across groups, muscle volumes decreased by 9.2 for gluteus maximus (GMAX), 8.0 for gluteus medius (GMED), and 10.5 for gluteus minimus after 59-day HDT bed rest (all P<0.005). The ILC increased by 1.3 for GMAX and 0.5 for GMED (both P<0.05). Neither of the AG protocols mitigated deconditioning of the gluteal muscles. Whereas all gluteal muscles atrophied, the ratio of lipids to intramuscular water increased only in GMAX and GMED muscles. These changes could impair the function of the hip joint and increased the risk of falls. The deconditioning of the gluteal muscles in space may negatively impact the hip joint stability of astronauts when reexpose to terrestrial gravity

    Lumbar muscle atrophy and increased relative intramuscular lipid concentration are not mitigated by daily artificial gravity after 60-day head-down tilt bed rest

    Get PDF
    Exposure to axial unloading induces adaptations in paraspinal muscles, as shown after spaceflights. This study investigated whether daily exposure to artificial gravity (AG) mitigated lumbar spine flattening and muscle atrophy associated with 60-day head-down tilt (HDT) bed rest (Earth-based space analogue). Twenty-four healthy individuals participated in the study: Eight received 30 minutes continuous AG; eight received 6x5 minutes AG, interspersed with rest periods; eight received no AG exposure (control group). Magnetic Resonance Imaging (MRI) of the lumbopelvic region was conducted at baseline (BDC) and at day 59 of HDT (HDT59). T1-weighted images were used to assess morphology of the lumbar spine (spinal length, intervertebral disc angles, disc area) and volumes of the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles from L1/L2 to L5/S1 vertebral levels. A chemical shift-based 2‐point lipid/water Dixon sequence was used to evaluate muscle composition. Results showed that: spinal length and disc area increased (P<0.05); intervertebral disc angles (P<0.05) and muscle volumes of LM, LES, and QL reduced (P<0.01); and fat/water ratio for the LM and LES muscles increased (P<0.01) after HDT59 in all groups. Neither of the AG protocols mitigated the lumbar spinal deconditioning induced by HDT bed rest. The increase in lipid/water ratio in LM and LES muscles indicates an increased relative intramuscular lipid concentration. Altered muscle composition in atrophied muscles may impair lumbar spine function after body unloading, which could increase injury risk to vulnerable soft tissues. This relationship needs further investigation

    Travel Writing and Rivers

    Get PDF

    THE ROLE OF NONCOGNITIVE CONSTRUCTS AND OTHER BACKGROUND VARIABLES IN GRADUATE EDUCATION

    Full text link
    corecore