1,175 research outputs found

    A Carbon Nanofilament-Bead Necklace

    Get PDF
    Carbon nanofilaments with carbon beads grown on their surfaces were successfully synthesized reproducibly by a floating catalyst CVD method. The nanofilaments hosting the pearl-like structures typically show an average diameter of about 60 nm, which mostly consists of low-ordered graphite layers. The beads with diameter range 150−450 nm are composed of hundreds of crumpled and random graphite layers. The mechanism for the formation of these beaded nanofilaments is ascribed to two nucleation processes of the pyrolytic carbon deposition, arising from a temperature gradient between different parts of the reaction chamber. Furthermore, the Raman scattering properties of the beaded nanofilaments have been measured, as well as their confocal Raman G-line images. The Raman spectra reveal that that the trunks of the nanofilaments have better graphitic properties than the beads, which is consistent with the HRTEM analysis. The beaded nanofilaments are expected to have high potential applications in composites, which should exhibit both particle- and fiber-reinforcing functions for the host matrixes

    Raman bands of double-wall carbon nanotubes: comparison with single- and triple-wall carbon nanotubes, and influence of annealing and electron irradiation

    Get PDF
    We compare the G and G2D bands of single-, double- and triple-wall carbon nanotubes (CNTs). We observe that the band shape is sensitive to the number of walls of the CNTs. For single-wall carbon nanotubes (SWCNTs), the G band is composed of two distinct contributions G+ and G-, while the G band for double-wall nanotubes is composed of one band with two main contributions from the inner and the outer tube. The G2D band can be fitted with one Lorentzian for single-wall tubes, while two distinct contributions are observed for double-wall carbon nanotubes (DWCNTs). Considerable variations of the G2D band are found with similar first order Raman spectra. Annealing influences the D- and RBM-band intensities. Electron irradiation has the effect of decreasing the G- and D-band wavenumbers but does not enhance the D-band intensity considerably. The down-shifts of the G- and D-band wavenumbers are correlated and are the same for two excitation wavelengths. This is consistent with the scattering of phonons around the K-point

    An Updated Search of Steady TeV γ\gamma-Ray Point Sources in Northern Hemisphere Using the Tibet Air Shower Array

    Full text link
    Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November-2005 November), our previous northern sky survey for TeV γ\gamma-ray point sources has now been updated by a factor of 2.8 improved statistics. From 0.00.0^{\circ} to 60.060.0^{\circ} in declination (Dec) range, no new TeV γ\gamma-ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV γ\gamma-ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits.Comment: This paper has been accepted by hepn

    A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    Get PDF
    We present a full-length α(1)β(2)γ(2) GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate-gated chloride channel (GluCl) from C. elegans and includes additional structural information from the prokaryotic ligand-gated ion channel ELIC in a few regions. Available mutational data of the binding sites are well explained by the model and the proposed ligand binding poses. We suggest a GABA binding mode similar to the binding mode of glutamate in the GluCl X-ray structure. Key interactions are predicted with residues α(1)R66, β(2)T202, α(1)T129, β(2)E155, β(2)Y205 and the backbone of β(2)S156. Muscimol is predicted to bind similarly, however, with minor differences rationalized with quantum mechanical energy calculations. Muscimol key interactions are predicted to be α(1)R66, β(2)T202, α(1)T129, β(2)E155, β(2)Y205 and β(2)F200. Furthermore, we argue that a water molecule could mediate further interactions between muscimol and the backbone of β(2)S156 and β(2)Y157. DZP is predicted to bind with interactions comparable to those of the agonists in the orthosteric site. The carbonyl group of DZP is predicted to interact with two threonines α(1)T206 and γ(2)T142, similar to the acidic moiety of GABA. The chlorine atom of DZP is placed near the important α(1)H101 and the N-methyl group near α(1)Y159, α(1)T206, and α(1)Y209. We present a binding mode of DZP in which the pending phenyl moiety of DZP is buried in the binding pocket and thus shielded from solvent exposure. Our full length GABA(A) receptor is made available as Model S1

    Remote Monitoring of Patient Respiration with Mask Attachment -- A Pragmatic Solution for Medical Facilities

    Full text link
    Remote monitoring of vital signs in infectious patients minimizes the risks of viral transmissions to healthcare professionals. Evidence indicates that donning face masks reduces the risk of viral transmissions and is now the norm in medical facilities. We propose attaching an acoustic-sensing device onto face masks to assist medical facilities in monitoring patients' respiration remotely. Usability and functionality studies of the modified face mask were evaluated on 16 healthy participants, who were blindfolded throughout the data collection. Around half of the participants noticed the difference between the modified and unmodified masks but they also reported there was no discomfort in using the modified mask. Respiratory rates of the participants were evaluated for one minute and the mean error of respiratory rate was found to be 2.0 +/- 1.3 breath per minute. As all participants were healthy, the wheeze detection algorithm was assessed by playing 176 wheezes and 176 normal breaths through a foam mannequin. The recordings were played at three different times to account for varying environmental noise. The overall accuracy of the wheeze detection algorithm was 91.9%. The current findings support and suggest the use of the mask attachment in medical facilities.Comment: Published on Inventions, 10 page

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore