130 research outputs found

    The Vehicle, Spring 1970, Vol. 12 no. 2

    Get PDF
    Vol. 12, No. 2 Table of Contents Prose short storyCarol Jean Baumgartepage 5 essayDan Franklinpage 8 short storyMary Yarbroughpage 21 Poetry Sara Brinkerhoffpage 20 Nick Dagerpage 18 E.S.page 17 Harry Fordpage 20 Melinda Gimbutpage 19 Ann Graffpage 20 Heather Hoebelpage 7 Becky McIntoshpage 20 John Metcalfpage 17 Mary Pipekpage 19 Cynthia C. Yohopage 17 Photography Dennis Hoaglundpages 5, 10, 21 Dale Huberpage 23 Scott Redfieldpages 7, 19 Tribute to the Ordinary Studentpage 11artMike DorseystoryNick Dagerhttps://thekeep.eiu.edu/vehicle/1022/thumbnail.jp

    CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis

    Get PDF
    CTGF is a secreted matricellular protein with very complex biology. It has been shown to modulate many signaling pathways leading to cell adhesion and migration, angiogenesis, myofibroblast activation, and extracellular matrix deposition and remodeling, which together lead to tissue remodeling and fibrosis. It has been reported in the literature that inhibition of CTGF expression by siRNA prevents CCl4-induced liver fibrosis and can reverse fibrosis when administered after significant collagen deposition is observed. A monoclonal antibody to CTGF that is currently in clinical development (FG-3019) has demonstrated the ability to reverse vascular stiffening and improve cardiac function in a rat model of diabetic complications. FG-3019 has also exhibited activity in a murine radiation-induced pulmonary fibrosis model. When FG-3019 was administered to mice after a significant radiation-induced increase in lung density could be observed by CT imaging, the density of the lungs was observed to decrease over the period during which the antibody was administered and to remain stable after therapy had ceased. When considered together, these data indicate that inhibition of CTGF can prevent and reverse the process of fibrosis

    Stakeholders' views and experiences of care and interventions for addressing frailty and pre-frailty:a meta-synthesis of qualitative evidence

    Get PDF
    Frailty is a common condition in older age and is a public health concern which requires integrated care and involves different stakeholders. This meta-synthesis focuses on experiences, understanding, and attitudes towards screening, care, intervention and prevention for frailty across frail and healthy older persons, caregivers, health and social care practitioners. Studies published since 2001 were identified through search of electronic databases; 81 eligible papers were identified and read in full, and 45 papers were finally included and synthesized. The synthesis was conducted with a meta-ethnographic approach. We identified four key themes: Uncertainty about malleability of frailty; Strategies to prevent or to respond to frailty; Capacity to care and person and family-centred service provision; Power and choice. A bottom-up approach which emphasises and works in synchrony with frail older people's and their families' values, goals, resources and optimisation strategies is necessary. A greater employment of psychological skills, enhancing communication abilities and tools to overcome disempowering attitudes should inform care organisation, resulting in more efficient and satisfactory use of services. Public health communication about prevention and management of frailty should be founded on a paradigm of resilience, balanced acceptance, and coping. Addressing stakeholders' views about the preventability of frailty was seen as a salient need

    Bioinformatic and statistical analysis of the optic nerve head in a primate model of ocular hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nonhuman primate model of glaucomatous optic neuropathy most faithfully reproduces the human disease. We used high-density oligonucleotide arrays to investigate whole genome transcriptional changes occurring at the optic nerve head during primate experimental glaucoma.</p> <p>Results</p> <p>Laser scarification of the trabecular meshwork of cynomolgus macaques produced elevated intraocular pressure that was monitored over time and led to varying degrees of damage in different samples. The macaques were examined clinically before enucleation and the myelinated optic nerves were processed post-mortem to determine the degree of neuronal loss. Global gene expression was examined in dissected optic nerve heads with Affymetrix GeneChip microarrays. We validated a subset of differentially expressed genes using qRT-PCR, immunohistochemistry, and immuno-enriched astrocytes from healthy and glaucomatous human donors. These genes have previously defined roles in axonal outgrowth, immune response, cell motility, neuroprotection, and extracellular matrix remodeling.</p> <p>Conclusion</p> <p>Our findings show that glaucoma is associated with increased expression of genes that mediate axonal outgrowth, immune response, cell motility, neuroprotection, and ECM remodeling. These studies also reveal that, as glaucoma progresses, retinal ganglion cell axons may make a regenerative attempt to restore lost nerve cell contact.</p

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen

    Get PDF
    Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim®), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim® attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim® antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0.05) decreased relative to the amount of PA remained in the solution after passing through unmodified as well as protein A modified poly(AAm-AGE) cryogel columns, indicates efficient PA removal from spiked PBS over 60 min of circulation. The high adsorption capacity towards anthrax toxin PA of the cryogel adsorbents indicated potential application of these materials for treatment of Bacillus anthracis infection

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Inference for stochastic chemical kinetics using moment equations and system size expansion

    Get PDF
    Quantitative mechanistic models are valuable tools for disentangling biochemical pathways and for achieving a comprehensive understanding of biological systems. However, to be quantitative the parameters of these models have to be estimated from experimental data. In the presence of significant stochastic fluctuations this is a challenging task as stochastic simulations are usually too time-consuming and a macroscopic description using reaction rate equations (RREs) is no longer accurate. In this manuscript, we therefore consider moment-closure approximation (MA) and the system size expansion (SSE), which approximate the statistical moments of stochastic processes and tend to be more precise than macroscopic descriptions. We introduce gradient-based parameter optimization methods and uncertainty analysis methods for MA and SSE. Efficiency and reliability of the methods are assessed using simulation examples as well as by an application to data for Epo-induced JAK/STAT signaling. The application revealed that even if merely population-average data are available, MA and SSE improve parameter identifiability in comparison to RRE. Furthermore, the simulation examples revealed that the resulting estimates are more reliable for an intermediate volume regime. In this regime the estimation error is reduced and we propose methods to determine the regime boundaries. These results illustrate that inference using MA and SSE is feasible and possesses a high sensitivity
    corecore