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Identification of sequence variants robustly associated with
predisposition to diabetic kidney disease (DKD) has the
potential to provide insights into the pathophysiological
mechanisms responsible. We conducted a genome-wide
association study (GWAS) of DKD in type 2 diabetes (T2D)
using eight complementary dichotomous and quantitative
DKD phenotypes: the principal dichotomous analysis in-
volved 5,717 T2D subjects, 3,345 with DKD. Promising
association signals were evaluated in up to 26,827 sub-
jects with T2D (12,710 with DKD). A combined T1D+T2D
GWASwasperformedusingcomplementary data available
for subjects with T1D, which, with replication samples, in-
volved up to 40,340 subjects with diabetes (18,582 with
DKD). AnalysisofspecificDKDphenotypes identifiedanovel
signal near GABRR1 (rs9942471, P = 4.53 1028) associated
withmicroalbuminuria in European T2D case subjects. How-
ever, no replication of this signal was observed in Asian
subjects with T2D or in the equivalent T1D analysis. There
was only limited support, in this substantially enlarged anal-
ysis, for association at previously reported DKD signals, ex-
cept for those atUMOD and PRKAG2, both associated with
estimated glomerular filtration rate.We conclude that, despite
challenges in addressingphenotypic heterogeneity, access
to increased sample sizes will continue to provide more
robust inference regarding risk variant discovery for DKD.

Progressive loss of renal function represents one of the
most serious complications of diabetes, yet strategies for
prevention and management are suboptimal. One of the

principal obstacles to improved clinical interventions
remains rudimentary understanding of the processes
whereby sustained exposure to elevated levels of glucose
(and/or other manifestations of the diabetic state) leads to
progressive disturbance of renal morphology and function
(1).

There is considerable variation in the progression and
severity of renal complications of diabetes (collectively,
diabetic kidney disease [DKD]). The prevalence of DKD in
subjects with type 2 diabetes (T2D) is ;30–50%: some
patients experience a relatively rapid decline in renal
function, whereas others maintain normal renal function
despite decades of suboptimal glycemic control (2). The
factors influencing this variation in outcome have not been
fully characterized, but substantial evidence supports
a genetic contribution. As in type 1 diabetes (T1D), DKD
in those with T2D aggregates in families (3,4), and the
prevalence of DKD in T2D differs considerably between
ethnic groups (5–7).

These observations indicate that the identification of
genetic variants influencing DKD predisposition should
accelerate characterization of the biological basis of DKD.
In contrast with most complex multifactorial traits, efforts
to apply candidate gene and genome-wide association
study (GWAS) approaches to DKD have met with limited
success (8–11). Many genetic associations have been
reported, but few robustly replicated loci have emerged.
This likely reflects the comparatively small sample sizes of
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previous studies, such that power would have been lim-
ited to detection of common loci of unusually large effect.
In the case of DKD in T2D, this is likely to have been
compounded by the heterogeneity of the phenotype:
autopsy studies indicate that only ;50% of chronic
kidney disease (CKD) in T2D can be attributed to classic
diabetic nephropathy (12). The success of equivalent
GWAS efforts for CKD (for which several replicated
loci have been described) provides reassurance that it is
possible to identify variants with broad impact on the
progression of renal disease, irrespective of the dominant
pathology (13).

Reduced kidney function, reflected by the estimated
glomerular filtration rate (eGFR) and end-stage renal
disease (ESRD), and dysfunction of the glomerular filtra-
tion barrier, reflected by albuminuria, can develop inde-
pendently. This suggests that the two cardinal features of
DKD involve distinct disease mechanisms and may be
subject to different genetic effects. Albuminuria is known
to be a poor predictor of diabetes-related ESRD, especially
in the early stages, and regression to normoalbuminuria
is common in patients with microalbuminuria (14).

These observations provide confidence that the combi-
nation of increased sample size and improved definition of
DKD phenotypes should enable risk variant detection and
uncover mechanisms that contribute to renal dysfunction
in diabetes. In particular, the separation of case subjects
into phenotypic classes based on disease stage and/or
phenotype manifestations, incorporating information on
both albumin excretion and eGFR, can be expected to
increase etiological homogeneity and augment power for
locus identification (14–16).

The SUrrogate markers for Micro- and Macrovascular
hard endpoints for Innovative diabetes Tools (SUMMIT)
Consortium adopted such a strategy to perform a GWAS
for DKD in subjects with T1D (17). Here, we report on

equivalent analyses conducted in the context of T2D, as
well as those from a combined T1D+T2D analysis involving
up to 40,340 subjects.

RESEARCH DESIGN AND METHODS

DKD Phenotype Definitions
Not all patients with DKD will develop every form of the
disease or progress to the most severe stage of ESRD.
Dysfunction of the glomerular barrier, represented by
albuminuria, and reduced kidney function, represented
by eGFR, can develop independently. To explore the dis-
ease severity spectrum and the different disease processes
represented by eGFR and albuminuria, we defined seven
binary phenotypes using clinical measures of albumin-to-
creatinine ratio (ACR), albumin excretion rate (AER),
and eGFR (Table 1 [T2D only] and Supplementary Table 8
[T1D+T2D]). The phenotype definitions were aligned to
other large-scale genetic studies of T1D DKD in SUMMIT
(17) and the Diabetic Nephropathy Collaborative Re-
search Initiative (DNCRI) (18). The definition of CKD
was also aligned to that used by the CKDGen Consortium
(eGFR ,60 mL/min/1.73 m2), although we restricted
case and control subjects to those with diabetes (13).

We used AER measured overnight (mg/min), during
24 h (mg/24 h), or as a spot measurement of ACR (mg/mmol)
or eGFR calculated using the Modification of Diet Renal
Disease Study (MDRD) formula (eGFR = 32,788 3 serum
creatinine (mmol/L)21.1543 age20.2033 [0.742 if female])
to classify disease stage and severity. We based the control
definition on either AER or ACR, as most studies had
measured either. In the studies that had measured both,
two of the three measures for AER and ACR had to meet
the control criteria (Table 1). We were unable to exclude
albuminuric patients that presented as normoalbuminuric
due to prescribed renin-angiotensin system blockers.
As reduced kidney function (reflected by eGFR) and
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dysfunction of the glomerular filtration barrier (reflected
by albuminuria) can develop independently, we did not
exclude individuals with albuminuria from the control
subjects for the eGFR-defined phenotypes and vice versa.
In subjects with T2D, ;46% of normoalbuminuric control
subjects had an eGFR,60 mL/min/1.73 m2 (1,098/2,372).

In all, we defined seven dichotomous phenotypes:

1. The “all DKD” phenotype, our primary phenotype, de-
signed to capture the broadest set of DKD phenotypes.

2. The “microalbuminuria” phenotype (equivalent to early
DKD from Sandholm et al. [17]) to identify variants that
contribute to early dysfunction of the glomerular barrier.

3. The “late DKD” phenotype to identify variants that
contribute to severe glomerular barrier dysfunction.

4. Two ESRD-related phenotypes focused on identification
of variants associated with end-stage renal failure,
comparing those with ESRD either to control subjects
without any DKD (“ESRD vs. control subjects”) or to
control subjects without ESRD (“ESRD vs. no ESRD”).

5. The “CKD” phenotype to identify variants that contrib-
ute to reduced kidney function (eGFR).

6. The “CKD and DKD” phenotype to identify any variants
that may contribute to the development of kidney
disease irrespective of glomerular barrier dysfunction
or reduced kidney function.

7. The “eGFR” phenotype, a continuous phenotype, to
identify variants that play a role in kidney function
that may not be detected by the analysis of the binary
DKD phenotypes. The eGFR measures were not trans-
formed as they approximated a normal distribution
(Supplementary Fig. 1).

Study Populations
We identified DKD case and control subjects with T2D
from the Scania Diabetes Registry (SDR) (19), Genetics
of Diabetes Audit and Research in Tayside Scotland
(GoDARTS) study (20), StenoDiabetesCentre (21), andBergamo
Nephrologic Diabetes Complications Trial (BENEDICT)
A and B studies (22). We identified independent replica-
tion studies in populations of European descent (Diabetes
Epidemiology: Collaborative analysis Of Diagnostic criteria
in Europe [DECODE], Family Investigation of Nephropa-
thy and Diabetes [FIND], Diabetes Register Vaasa [DIREVA],
Diagnostic Optimization and Treatment of Diabetes and Its
Complications in the Chernihiv Region [DOLCE], Malmö
Diet and Cancer [MDC], Inter99, Vejle Diabetes Biobank,
and the Anglo-Danish-Dutch Study of Intensive Treatment
In People with Screen Detected Diabetes in Primary Care
[ADDITION] studies) and Asian descent (RIKEN, the
Singapore Diabetic Cohort Study [SDCS], the Hong Kong
Diabetes Registry [HKDR], and the Singapore Study of
Macro-angiopathy and Microvascular Reactivity in Type 2
Diabetes [SMART2D] study) (Supplementary Table 1).

We combined the subjects with T2D with nonoverlap-
ping samples from the study of DKD in subjects with T1D
(17). Replication studies (of DKD in subjects with T1D)

(17) were also used for replication in the combined analysis
of T1D+T2D (Supplementary Table 1). None of these
studies overlapped with samples included in the analysis
of eGFR and CKD by the CKDGen Consortium (13).

Genome-Wide Genotyping and Imputation
The T2D discovery cohorts were genotyped on the Affy-
metrix SNP 6.0, the Illumina Omni express array, and
the Illumina 610Quad arrays (Supplementary Table 4).
Individual study centers excluded single nucleotide
polymorphisms (SNPs) for minor allele frequency (MAF)
,1%. SNPs with a MAF 1–5% were excluded if the Hardy-
Weinberg equilibrium test P , 1 3 1024 or the call
rate ,99%. SNPs with MAF $5% were excluded if
the Hardy-Weinberg equilibrium test P , 5.7 3 1027 or
the call rate ,95% (23). Samples were excluded if their
call rate was ,95%, genotype heterozygosity was .3 SD
from the study sample mean, or they failed sex checks.
Based on principal component analysis, population outliers
were removed if they were not of European descent (com-
pared with the 1000 Genomes Project [1000G] populations)
or fell .3 SD away from the population means of the first
two principal components for samples of European descent.
Duplicates were removed but related individuals were
retained for genotype imputation.

Genotypes were prephased using SHAPE-IT (v2) (24)
and imputed using IMPUTEv2 (25) against the March
2013 1000G version 1 reference panel using standard
protocols and recommended settings.

Replication Genotyping
Direct typing of twelve SNPs (rs11622435, rs12917707,
rs17421627, rs1989248, rs2194025, rs2206136, rs4977388,
rs61277444, rs6865390, rs7222331, rs9939609, and
rs9942471) was performed in DIREVA samples using
TaqMan allelic discrimination assays, according to the
manufacturer’s protocol (Applied Biosystems, Carlsbad,
CA). Sequenom multiplex genotyping was performed for
the same SNPs in DOLCE, using the standard protocol
(26).

Statistical Analysis

Heritability of DKD Phenotypes
Narrow sense heritability was estimated by GCTA (v1.26)
(27) from 4.5 million directly typed and imputed markers
(info .0.75) in GoDARTS (Supplementary Table 1) for all
DKD, CKD, and eGFR. The sample size for these pheno-
types exceeded the recommended threshold for reliable
heritability estimates (N = 3,160 based on SE #0.1) (28).

Genome-Wide Association Analysis
Genome-wide association analyses were performed by in-
dividual study centers using an additive model while cor-
recting for age, sex, and duration of diabetes. We estimated
allelic effects using the score test from SNPTESTv2 in
unrelated samples for dichotomous traits (29). Association
P values were calculated using EMMAX froma larger sample
of related individuals while correcting for a kinship matrix
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(30). For eGFR phenotype, we estimated allelic effects and
association P values using EMMAX (30).

Power Calculations
We performed power calculations for dichotomous traits
based on a MAF of 8%, an allelic odds ratio (OR) range of
1.05–2.00, and a = 5 3 1028 (genome-wide significance).
The power calculations were performed for the discovery
meta-analysis of all DKD and separately for the meta-
analyses of T2D only (3,345 DKD case and 2,372 DKD
control subjects) and the combined T1D+T2D (5,908 DKD
case and 4,965 DKD control subjects).

At a # 5 3 1028, we had .80% power to detect an
allelic OR .1.40 in the T2D-only discovery analysis (Sup-
plementary Fig. 2C) and an allelic OR .1.25 in the
T1D+T2D discovery analysis (Supplementary Fig. 2B). We
also performed power calculations for the reported DKD
loci, as above, but using a = 93 1024 (this a accounts for the
number of loci tested but not the number of phenotypes
analyzed). InT1D+T2Danalysis,wehad.80%power todetect
variants with an allelic OR .1.20 (Supplementary Fig. 2A).

Discovery Meta-analysis
Two discovery meta-analyses were performed: one that
included summary statistics estimated from subjects with
T2D only and a second that combined T2D-only analyses
with equivalent analyses in subjects with T1D (17). In-
dividual study summary statistics were centrally filtered
for a minor allele count in either case or control sub-
jects ,10 and an info score ,0.4 for imputed variants.

EMMAX P values were combined in a sample size
weighted z-statistic meta-analysis using METAL (version
25/03/2011) (31). Effect estimates were combined in
a fixed-effect inverse-variance weighted meta-analysis us-
ing GWAMA (v2.1) (32). Meta-analysis results were re-
stricted to allelic effects estimated in two or more studies.
For binary traits, independent variants (.100 kb apart)
were selected for replication from the T2D-only analysis
based on association P# 53 1026 and from the T1D+T2D
analysis based on P # 1 3 1026. For eGFR pheno-
type, SNPs were chosen for replication based on associa-
tion P# 53 1026 in subjects with T2D or P, 13 1026 in
the T1D+T2D analysis. SNPs associated with eGFR at P #
5 3 1024 in either eGFR analysis (T2D only or T1D+T2D)
that had also been reported at P # 5 3 1028 with eGFR
by the CKDGen Consortium were also included in the list
of SNPs for replication (13).

Replication
We sought replication for 164 lead variants in 13 studies of
T2D DKD for which it was possible to obtain in silico
replication from available GWAS data or replication from
de novo genotyping (DIREVA and DOLCE) (Fig. 1). Rep-
lication studies aligned their DKD phenotypes with those
used in the SUMMIT GWAS. Although association results
for the lead variants were recovered for all compatible DKD
phenotypes available in the replication samples (Supple-
mentary Table 1), joint meta-analysis results were reported

for those phenotypes where the primary GWAS associa-
tions exceeded the thresholds above.

As with the discovery, meta-analysis effect estimates
from replication studies were combined using GWAMA
(v2.1) (32), and EMMAX P values, using METAL (version
25/03/2011) (31).

Known DKD Variants
We examined the literature for variants that have been asso-
ciated with DKD from candidate gene (P , 0.05) and GWA
(P# 53 1028) studies. Sixty-one variants were identified and
aligned to the reported risk allele for binary traits (or the trait-
raising allele for quantitative traits). We assessed both direc-
tion of effect and strength of association in the current study
for those phenotypes that most closely matched the original
report (but irrespective of type of diabetes).

Genetic Risk Score Analysis
We included variants (P # 5 3 1028) from GWAS to
generate genetic risk scores (GRS) for coronary artery
disease (33), BMI (34), waist-to-hip ratio adjusted for
BMI (35), LDL cholesterol, triglycerides, HDL cholesterol
(36), fasting insulin, insulin resistance (37–39), fasting glu-
cose (38), T1D (40), T2D (41), and systolic blood pressure
(42). The relationship between the GRS and DKD pheno-
type was calculated using an inverse-variance weighted
method described in Ehret et al. (42).

RESULTS

DKD Definitions
We considered seven dichotomous phenotypes designed
to capture the spectrum of DKD (see RESEARCH DESIGN AND

METHODS) and eGFR. We aimed to identify variants that
influence multiple stages in DKD progression, as well as
those that have more stage-specific effects. The principal
definition (all DKD) included 3,345 T2D subjects with any
form of DKD (ranging from microalbuminuria to ESRD) as
case subjects and 2,372 T2D subjects, normoalbuminuric
despite.10 years duration of diabetes, as control subjects.
The other six dichotomous phenotypic comparisons are
described in Table 1 (see RESEARCH DESIGN AND METHODS).

Contribution of Genetic Variants to DKD
The genetic variation, explained by the SNPs on the
genotyping array and estimated using GCTA (v1.26) (30)
in up to 6,335 subjects with T2D from GoDARTS, was
highest in CKD (h2 = 0.12) and similar for all DKD (h2 =
0.08) and eGFR (h2 = 0.07) (Supplementary Table 2). We
restricted analyses to phenotypes with sample sizes deemed
sufficient for accurate estimation of heritability (N $3,160
to obtain SE #0.1) (28).

GWAS for DKD in T2D
The DKD discovery analysis combined GWAS data from
four studies of European descent: GoDARTS (20), SDR
(19), Steno (21), and BENEDICT (phases A and B) (22)
(Table 1 and Supplementary Table 3). For the principal
(all DKD) analysis, the sample size of the discovery
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T2D-only meta-analysis had .80% power to detect var-
iants withMAF$8% and allelic OR.1.40 (Supplementary
Fig. 2C). The number of variants meta-analyzed for each
DKD phenotype varied between 5,864,445 in the ESRD vs.
no ESRD phenotype and 9,263,264 in the all DKD pheno-
type (Supplementary Table 4). These differences reflect
the minor allele count exclusion filter.

Manhattan and quantile-quantile plots of discovery
P values for each of the eight DKD phenotypes were well
calibrated, and several showed a modest excess of signifi-
cant associations (Supplementary Fig. 3). In the discovery
GWAS, only one locus reached genome-wide significance:
PLCB4 (encoding 1-phosphatidylinositol 4,5-bisphosphate

phosphodiesterase b-4) on chromosome 20. The lead var-
iant rs2206136 was associated with the CKD phenotype
(effect allele frequency [EAF] 42%, OR 1.20 [95% CI 1.08,
1.34]; P = 2.13 1028) (Table 2 and Supplementary Fig. 3A).

To extend power to detect associations of lesser effect
and to replicate the PLCB4 association, we identified 139
loci with SNP associations exceeding P # 5 3 1026 in at
least one of the seven dichotomous DKD analyses. We also
identified 22 loci (25 lead variants) for replication from
the eGFR analysis (based on either P , 5 3 1026 in our
eGFR analyses alone or P , 5 3 1024 in our analysis and
a genome-wide association [P , 5 3 1028] reported by
the CKDGen Consortium) (Supplementary Fig. 3Q) (13).

Figure 1—Eight DKD phenotypes were analyzed in subjects with T2D (blue boxes) and in a combined (green boxes) analysis of subjects with
T2D or T1D (yellow box). N indicates the total sample count for either the all DKD (number of case subjects is given in parentheses) or the
eGFR phenotype and may vary by variant as well as by DKD phenotype. Replication was sought for 164 loci and 47 loci from each analysis,
respectively, in subjects of European and Asian ancestry with either T1D or T2D.
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We sought replication for 164 lead variants in 13 studies of
T2D DKD (9 involving European subjects and 4 involving
Asian subjects) for which it was possible to obtain asso-
ciation analyses based on either in silico (from existing
GWAS) or de novo genotyping (Fig. 1). Replication studies
recoded their DKD phenotypes to align definitions with
those used in the SUMMIT GWAS. Although associa-
tion results for the lead variants were recovered for all
compatible DKD phenotypes available in the replication
samples (Supplementary Table 1), joint meta-analysis re-
sults are reported for only those phenotypes where the
primary GWAS associations exceeded the thresholds above
(Supplementary Table 5). The replication samples available
for the all DKD phenotype included up to 3,999 T2D
subjects of European ancestry (1,270 case subjects) and
17,111 (8,095 case subjects) from Asia (Supplementary
Table 1).

The CKD association near PLCB4 did not replicate in
either European or Asian data (joint analysis, ORAsian+Euro

1.12 [95% CI 1.05, 1.19]; P = 2.1 3 1024) (Table 2). Joint
analysis of dichotomous DKD phenotypes identified one
novel SNP association that marginally exceeded genome-
wide significance (P = 5 3 1028, without adjustment for
the multiple GWAS we performed) (Table 2). This signal,
on chromosome 6, is centered on rs9942471 and lies
;7 kb upstream of GABRR1 (encoding the rho1 subunit
of the GABA type a receptor). The major allele was asso-
ciated with increased risk of microalbuminuria in subjects
of European ancestry (joint analysis, EAF 64%, OREuro 1.25
[95% CI 1.16, 1.34]; P = 4.5 3 1028) (Fig. 2 and Table 2).
Associations of rs9942471 with other DKD phenotypes
are given in Supplementary Table 6.

rs9942471 is in high linkage disequilibrium (LD)
(r2 .0.8) with the lead expression quantitative trait locus
variant for GABRR1 expression in the artery, esophagus,
and skin (P# 43 1028), and the major allele is associated
with decreased expression (42). However, there was no
evidence for replication of this SNP in T2D subjects of
Asian ancestry only (EAF 90%, ORAsian 0.99 [95% CI 0.87,
1.13]; P = 0.91), although the higher frequency of the effect
allele in Asians (90%) compared with Europeans (64%)
reduces the power to detect an effect in subjects of Asian
descent. Ethnic differences in regional LD could have con-
tributed to failed replication: rs9942471 may be a better
marker of the shared causal variant in subjects of European
descent. However, this seems unlikely given broad similar-
ity of LD patterns across subjects of European and Asian
descent (estimated separately from the 1000G population).

Replication samples for the eGFR phenotype included
8,749 subjects of European and 9,071 subjects of Asian
ancestry with T2D (Fig. 1). Joint analysis of discovery and
replication results captured the well-established associa-
tion with variants near UMOD (uromodulin), centered
on rs11864909 (bAsian+Euro 2.34 [95% CI 1.68, 3.00]
mL/min/1.73 m2; P = 4.4 3 10212) (Table 2). There
was no difference in effect by diabetes type: the effect
estimate in subjects with T1D (bT1D 1.23 (20.05, 2.51);

P = 0.06) overlapped the effect size in subjects with T2D
(17). We also compared the effects of variants associated
with DKD phenotypes in subjects with T2D (Table 1) with
their effects in equivalent DKD phenotypes in subjects
with T1D (17) (Supplementary Table 7).

Combined T1D+T2D Analysis
To increase power to detect loci that contribute to pro-
cesses involved in the development of DKD irrespective of
diabetes subtype, we combined the results from the pri-
mary GWAS meta-analysis for T2D-DKD phenotypes with
those for the corresponding T1D-DKD phenotypes (Sup-
plementary Tables 4 and 9) (17). The combined discovery
meta-analysis of all DKD included 10,873 subjects with
diabetes of European descent (5,908 case subjects) and
provided .80% power (a = 5 3 1028) to detect a SNP
association with an allelic OR .1.25 for variants with
MAF .8% (Supplementary Fig. 2B). The number of var-
iants meta-analyzed ranged from 7,959,015 for ESRD vs.
no ESRD to 9,364,702 for the all DKD phenotype (Sup-
plementary Table 4).

No significant associations were detected for di-
chotomous DKD phenotypes in the combined T1D+T2D
meta-analysis (Supplementary Fig. 4 and Supplementary
Table 9). The combined meta-analysis for eGFR highlighted
a novel genome-wide significant association involving a clus-
ter of variants on chromosome 2 led by rs1974990 (EAF 8%,
b 4.07 [95%CI 2.61, 5.52]mL/min/1.73m2; P = 4.83 1028)
and mapping near SSB (encoding Sjogren syndrome an-
tigen B) (Table 2).

As in the T2D-only analysis, we selected 47 loci for
replication (30 with P, 13 1026 with at least one of the
DKD phenotypes) from the combined T1D+T2D GWAS
and an additional 17 loci from the equivalent analysis
of eGFR. The combined association P value for rs9942471
(microalbuminuria, OR 1.10 [95% CI 1.02, 1.19]; P =
0.001) did not reach the threshold for replication. Lead
variants at these 47 loci were tested for all DKD pheno-
types available in the relevant replication samples in
subjects with T1D or T2D (Supplementary Table 1). Meta-
analysis results were only reported for those phenotypes
that contributed to discovery-stage associations. This
joint, combined T1D+T2D analysis generated a substan-
tially enlarged data set for the all DKD phenotype (40,640
subjects [18,582 case subjects]) (Fig. 1). However, none of
the variants selected for replication from the dichoto-
mous phenotypes reached genome-wide significance (P#
5 3 1028).

The joint, combined analysis for eGFR in subjects of
European and Asian descent included 31,562 subjects and
replicated known associations near UMOD (rs11864909,
bAsian+Euro 2.11 [95% CI 1.52, 2.70]; P = 2.3 3 10212) and
PRKAG2 (rs10224002, bAsian+Euro 2.01 [1.30, 2.72]; P =
2.7 3 1028) (Table 2 and Supplementary Figs. 5 and 6).
The PRKAG2 was nonsignificant (P # 5 3 1028) in in-
dividual analyses of eGFR in T2D-only (bEuro 2.13 [95%
CI 1.28, 2.98]; P = 8.5 3 1027) or T1D-only (bEuro 1.23
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[20.19, 2.65]; P = 0.09) analyses, and effect sizes did not
differ by type of diabetes.

The association at SSB, detected in the combined
eGFR analysis, did not replicate (rs1974990, b 0.04
[95% CI 22.69, 2.76] mL/min/1.73 m2; P = 0.98) and
was no longer genome-wide significant in the joint, com-
bined analysis (bAsian+Euro 3.17 [1.88, 4.45]mL/min/1.73m2;
P = 1.4 3 1026) (Table 2).

Evaluating Previous Association Claims
Of the 61 published loci, for which there are published
claims of association with T1D DKD or T2D DKD (8), 55 of
these associations were represented by variants contrib-
uting to our meta-analyses of DKD phenotypes in either
subjects with T2D only or T1D+T2D. Two of these, the

eGFR associations at UMOD and PRKAG2, replicate at
genome-wide significance in our data (Table 2). We tested
the association of the remaining 53 lead variants in the
T2D-only and combined analyses (Supplementary Fig. 6).
Fourteen variants were associated with a DKD phenotype
corresponding to the original report at nominal signifi-
cance (P , 0.05), but only 10 of these were directionally
consistent with previous reports (Supplementary Table
10). At a more stringent significance level (P , 9 3
1024) that accounts for the 55 variants tested (but not
the multiple phenotypic categories), only 2 variants were
associated with a DKD phenotype that corresponded to the
original report, both in the combined T1D+T2D analysis
and both directionally consistent with previous reports.
These two SNPs were rs2838302, near SIK1, associated

Figure 2—A: Manhattan plot of P values from the meta-analysis of allelic effects on early DKD in subjects with T2D of European descent. The
red line represents genome-wide significance (P, 53 1028) and the blue line suggestive significance (P, 13 1026). The peak represented
by rs9942471 (P = 4.53 1028) near GABRR1 is highlighted in orange. B: A forest plot of allelic OR and imputation information scores (RSQ)
from individual studies that contributed to the discovery and replication analyses of rs9942471 in microalbuminuria phenotype; rs9942471
genotypes were not available in Steno. C: A LocusZoom plot of the signal near GABRR1 led by rs9942471 that was associated with
microalbuminuria in European subjects with T2D.
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with ESRD vs. no ESRD (EAF 8%, OR 1.39 [95% CI 1.12,
1.74]; P = 3.9 3 1024), and rs7583877, near AFF3,
associated with ESRD vs. no ESRD (OR 1.22 [95% CI
1.13, 1.32]; P = 4.8 3 1024) (Supplementary Table 10).
When we took account of the substantial participant
overlap between the original reports and the samples in
the current study, apparent replications failed to reach
nominal (P , 0.05) significance (though, for these, the
sample sizes available for independent replication were
often small). Thus, other than the eGFR associations at
UMOD and PRKAG2, we found limited evidence in this
study to corroborate previously reported DKD associa-
tions, despite, for most variants, sample sizes considerably
larger than those included in the original report. Validation
of previously reported DKD associations could be complicated
by differences in phenotype definitions and/or analytical
methods between this study and published reports. We could
not assess whether the UMOD or PRKAG2 allelic effects were
different in this study compared with those reported by
CKDGen Consortium as the allelic effects were not on the
same scale (e.g., untransformed vs. log transformed).

Genetic Overlap With Risk Factors
Several exposures and diseases have been reported to
increase DKD risk in epidemiological studies (1,2,43). To
explore the extent to which these reflect shared genetic
background,we constructedweightedGRS for 20 traits related
to diabetes (37,39–41), insulin resistance (38), obesity (34,35),

hypertension (42), coronary artery disease (33), and lipids
(36). These GRS, constructed from signals identified (P,
53 1028) in previously published GWAS, included between
10 and 96 SNPs per phenotype. We tested the association
of these GRS with each of the DKD phenotypes from this
study in both T2D-only and T1D+T2D data sets (42).

After Bonferroni correction (P # 2.5 3 1023, which
accounts for the number of trait GRS but not the number
of DKD phenotypes), a GRS for increased waist-to-hip ratio
(P = 4.83 1024) was associated with increased risk of ESRD
vs. no ESRD phenotype and a GRS for increased BMI was
associated with all DKD (P = 1.8 3 1024) and late DKD
(P = 1.8 3 1023) phenotypes in subjects with T2D.
A similar pattern of association for the BMI GRS was
observed in the combined T1D+T2D all DKD analysis (P =
2.4 3 1025) (Supplementary Table 11 and Fig. 3). This
last result survives additional correction (a = 1.63 1024)
for the 16 DKD phenotypic comparisons considered.

There is evidence implicating insulin resistance in
the pathogenesis of DKD, and we wanted to understand
whether the BMI GRS associations might reflect obesity-
related insulin resistance (44,45). We focused on the effects
of two alternative GRS for insulin resistance on DKD. The
first, comprising lead variants (N = 10) associated with in-
creased fasting insulin (BMI adjusted) (37), was associated
with increased risk of ESRD in subjects with T2D (ESRD vs.
no ESRD P = 1.63 1023; ESRD vs. control subjects P = 1.73
1023) (Supplementary Table 11 and Fig. 3). The second,

Figure 3—A heat map of GRS associations with DKD phenotypes in subjects with either T1D or T2D. A GRS for BMI was significant after
correction for multiple testing, whereas other traits, including systolic blood pressure, were not associated with DKD phenotypes. adj.,
adjusted; FG, fasting glucose; In, insulin; IR, insulin resistance.

1424 GWAS of Diabetic Kidney Disease Diabetes Volume 67, July 2018

http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db17-0914/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db17-0914/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db17-0914/-/DC1


comprising lead variants from 53 loci associated with high
fasting insulin (BMI adjusted), low HDL cholesterol, and
high triglycerides (39), failed to show any association with
DKD phenotypes. These findings provide some support
for the causal contribution of insulin resistance and obesity
to DKD pathogenesis. However, there is potential that some
of these effects reflect collider bias (46), and additional
larger studies will be required to substantiate this inference.

DISCUSSION

This study represents the largest study of the genetic basis
of DKD in subjects with T2D to date, extending previous
reports with respect to sample size and range of DKD
phenotypes. We aimed to overcome some of the limita-
tions of earlier studies in this area and to develop insights
into the pathogenesis of DKD. Despite sample sizes that
exceeded 40,000, the yield of novel discoveries was
modest. There were no significant (P, 53 1028) genetic
associations with all DKD that was best-powered defini-
tion on sample size. The relatively large sample size came
with increased phenotypic (and likely genetic) heterogene-
ity: it was for this reason that we examined a range of DKD
phenotypes that might offer better power to detect genetic
associations with more restricted phenotypic impacts.

This approach successfully identified a novel locus,
GABRR1 (led by rs9942471), for a microalbuminuria phe-
notype in European subjects with T2D. The variants, near
GABRR1, reached a level of significance (P , 5 3 1028)
that has typically been associated with robust, reproduc-
ible association in common disease GWAS. GABRR1 ex-
pression is upregulated in renal biopsies from DKD subjects
(compared with control subjects) and in other non-DKD
subjects characterized by glomerular scarring and inflam-
mation (47). The variants were associated with GABRR1
expression in aorta, esophageal mucosa, and skin in the
Genotype-Tissue Expression (GTEx) project. However, we
found no replication of the GABRR1 association in subjects
of European ancestry with T1D DKD or in subjects of Asian
ancestry with T2D, though differences in risk allele fre-
quencies between these two ancestries and the modest size
of the replication data sets at this locus reduce the power
of the latter analysis. Our overall assessment is that this
association should be considered provisional until it is
possible to undertake further rounds of adequately powered
replication that could establish the definitive status of
this variant and that this locus should also be assessed for
effects on DKD progression in longitudinal studies.

Even in the absence of specific signals of association
with DKD, it is possible to use the aggregate pattern of
association across the genome to identify more subtle ge-
netic effects. TheGRS analyses described here provide genetic
support for the causal contribution of obesity to the de-
velopment of T2D DKD. This echoes strong epidemiological
data, and mirrors equivalent analyses in T1D DKD (48,49).
However, we cannot exclude that these associations may
partly reflect collider bias (46): subjects with high BMI are

likely to have a longer duration of diabetes and thus a higher
chance of developing complications. Analyses using genetic
instruments (GRS) for variation in insulin sensitivity pro-
duced variable results with respect to T2D DKD but in-
dicate that the BMI effects may be partially mediated via
obesity-related insulin resistance (37). There are sub-
stantial epidemiological data to support this link between
insulin resistance and DKD risk (44,45).

The modest yield of association signals and the limited
replication of previous claims of DKD association empha-
sizes challenges associated with the identification of DKD
risk variants. For many complex traits, these have been
overcome through a combination of increased sample size
and phenotypic precision. Published genetic association
studies of DKD have often used different definitions of
DKD, which makes replication of previous findings diffi-
cult. In this study, we used phenotype definitions aligned
to those used in the study of DKD in subjects with T1D
(17). Standardizing the phenotype definitions in this way
allowed for seamless combination of the GWAS data across
the two studies and may streamline subsequent efforts
to study the genetics of DKD. The phenotype definitions
applied to this study address some of the challenges asso-
ciated with increasing sample size while maintaining phe-
notype precision and should, in due course, support the
identification of robust associations with DKD. It is clear
that these phenotype definitions are not without limitations:
in the absence of strong genetic signals, we have few clues
to which particular diagnostic configurations will be most
productive for genetic discovery. Targeting the phenotypes
that show the greatest heritability may provide a guide (14).
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