1,043 research outputs found

    Rotationally Inelastic Collisions of CN⁻ with He: Computing Cross Sections and Rates in the Interstellar Medium

    Get PDF
    A newly calculated ab initio potential energy surface is used to compute collision-driven state-changing cross sections and rate coefficients over a range from 5 to 100 K for CN−(1Σ), the smallest anion detected in the interstellar medium, interacting with He, an abundant species in this environment. We compare our presently computed rate coefficients with those previously published for the similar and important systems CN–He, CN-H2, and CN−–H2 to illustrate the broader network of inelastic, state-changing processes for these four systems. We also discuss the size-scaling effects that occur when changing partners from He to H2. We further analyze the differences in size between collision-driven rate coefficients when going from neutral CN to its anion. All the present results are discussed in detail, to provide accurate and realistic data for chemical networks that wish to include the CN− anion in their modeling of astrochemical environments

    Rotational state-changing collisions of C2H− and C2N− anions with He under interstellar and cold ion trap conditions: A computational comparison

    Get PDF
    We present an extensive range of quantum calculations for the state-changing rotational dynamics involving two simple molecular anions that are expected to play some role in the evolutionary analysis of chemical networks in the interstellar environments, C2H− (X1Σ+) and C2N− (X3Σ−), but for which inelastic rates are only known for C2H−. The same systems are also of direct interest in modeling selective photo-detachment experiments in cold ion traps where the He atoms function as the chief buffer gas at the low trap temperatures. This study employs accurate, ab initio calculations of the interaction potential energy surfaces for these anions, treated as rigid rotors, and the He atom to obtain a wide range of state-changing quantum cross sections and rates at temperatures up to about 100 K. The results are analyzed and compared for the two systems to show differences and similarities between their rates of state-changing dynamics

    Collision-driven state-changing efficiency of different buffer gases in cold traps: He(ÂčS), Ar(ÂčS) and p-H₂(ÂčÎŁ) on trapped CN-(ÂčÎŁ)

    Get PDF
    We employ potential energy surfaces (PES) from ab initio quantum chemistry methods to describe the interaction of the CN^{-}({1}^ÎŁ) molecule, one of the small anions often studied at low temperatures, with other possible gases which can be employed as buffer in cold ion traps: the He and Ar atoms and the p-H-{2} molecule. These PESs are used to calculate from quantum multichannel dynamics the corresponding state-changing rate constants between the populated rotational states of the anion, the latter being in its electronic and vibrational ground states. The different cross sections for the collision-driven quenching and excitation processes at low temperatures are compared and further used to model CN^{-} cooling (de-excitation) efficiency under different trap conditions. The interplay of potential coupling strength and mass-scaling effects is discussed to explain the differences of behaviour among the buffer gases. The advantages of being able to perform collisional cooling at higher trap temperatures when using Ar and p-H_{2} as buffer gases are also discussed

    Radiographers supporting radiologists in the interpretation of screening mammography: a viable strategy to meet the shortage in the number of radiologists.

    Get PDF
    BackgroundAn alternative approach to the traditional model of radiologists interpreting screening mammography is necessary due to the shortage of radiologists to interpret screening mammograms in many countries.MethodsWe evaluated the performance of 15 Mexican radiographers, also known as radiologic technologists, in the interpretation of screening mammography after a 6 months training period in a screening setting. Fifteen radiographers received 6 months standardized training with radiologists in the interpretation of screening mammography using the Breast Imaging Reporting and Data System (BI-RADS) system. A challenging test set of 110 cases developed by the Breast Cancer Surveillance Consortium was used to evaluate their performance. We estimated sensitivity, specificity, false positive rates, likelihood ratio of a positive test (LR+) and the area under the subject-specific Receiver Operating Characteristic (ROC) curve (AUC) for diagnostic accuracy. A mathematical model simulating the consequences in costs and performance of two hypothetical scenarios compared to the status quo in which a radiologist reads all screening mammograms was also performed.ResultsRadiographer's sensitivity was comparable to the sensitivity scores achieved by U.S. radiologists who took the test but their false-positive rate was higher. Median sensitivity was 73.3 % (Interquartile range, IQR: 46.7-86.7 %) and the median false positive rate was 49.5 % (IQR: 34.7-57.9 %). The median LR+ was 1.4 (IQR: 1.3-1.7 %) and the median AUC was 0.6 (IQR: 0.6-0.7). A scenario in which a radiographer reads all mammograms first, and a radiologist reads only those that were difficult for the radiographer, was more cost-effective than a scenario in which either the radiographer or radiologist reads all mammograms.ConclusionsGiven the comparable sensitivity achieved by Mexican radiographers and U.S. radiologists on a test set, screening mammography interpretation by radiographers appears to be a possible adjunct to radiologists in countries with shortages of radiologists. Further studies are required to assess the effectiveness of different training programs in order to obtain acceptable screening accuracy, as well as the best approaches for the use of non-physician readers to interpret screening mammography

    Transcriptome of iPSC-derived neuronal cells reveals a module of co-expressed genes consistently associated with autism spectrum disorder

    Get PDF
    Evaluation of expression profile in autism spectrum disorder (ASD) patients is an important approach to understand possible similar functional consequences that may underlie disease pathophysiology regardless of its genetic heterogeneity. Induced pluripotent stem cell (iPSC)-derived neuronal models have been useful to explore this question, but larger cohorts and different ASD endophenotypes still need to be investigated. Moreover, whether changes seen in this in vitro model reflect previous findings in ASD postmortem brains and how consistent they are across the studies remain underexplored questions. We examined the transcriptome of iPSC-derived neuronal cells from a normocephalic ASD cohort composed mostly of high-functioning individuals and from non-ASD individuals. ASD patients presented expression dysregulation of a module of co-expressed genes involved in protein synthesis in neuronal progenitor cells (NPC), and a module of genes related to synapse/neurotransmission and a module related to translation in neurons. Proteomic analysis in NPC revealed potential molecular links between the modules dysregulated in NPC and in neurons. Remarkably, the comparison of our results to a series of transcriptome studies revealed that the module related to synapse has been consistently found as upregulated in iPSC-derived neurons-which has an expression profile more closely related to fetal brain-while downregulated in postmortem brain tissue, indicating a reliable association of this network to the disease and suggesting that its dysregulation might occur in different directions across development in ASD individuals. Therefore, the expression pattern of this network might be used as biomarker for ASD and should be experimentally explored as a therapeutic target

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore