624 research outputs found

    Electronic Noses and Tongues: Applications for the Food and Pharmaceutical Industries

    Get PDF
    The electronic nose (e-nose) is designed to crudely mimic the mammalian nose in that most contain sensors that non-selectively interact with odor molecules to produce some sort of signal that is then sent to a computer that uses multivariate statistics to determine patterns in the data. This pattern recognition is used to determine that one sample is similar or different from another based on headspace volatiles. There are different types of e-nose sensors including organic polymers, metal oxides, quartz crystal microbalance and even gas-chromatography (GC) or combined with mass spectroscopy (MS) can be used in a non-selective manner using chemical mass or patterns from a short GC column as an e-nose or “Z” nose. The electronic tongue reacts similarly to non-volatile compounds in a liquid. This review will concentrate on applications of e-nose and e-tongue technology for edible products and pharmaceutical uses

    Real-time gas mass spectroscopy by multivariate analysis

    Get PDF
    Early and significant results for a real-time, column-free miniaturized gas mass spectrometer in detecting target species with partial overlapping spectra are reported. The achievements have been made using both nanoscale holes as a nanofluidic sampling inlet system and a robust statistical technique. Even if the presented physical implementation could be used with gas chromatography columns, the aim of high miniaturization requires investigating its detection performance with no aid. As a study case, in the first experiment, dichloromethane (CH2Cl2) and cyclohexane (C6H12) with concentrations in the 6-93 ppm range in single and compound mixtures were used. The nano-orifice column-free approach acquired raw spectra in 60 s with correlation coefficients of 0.525 and 0.578 to the NIST reference database, respectively. Then, we built a calibration dataset on 320 raw spectra of 10 known different blends of these two compounds using partial least square regression (PLSR) for statistical data inference. The model showed a normalized full-scale root-mean-square deviation (NRMSD) accuracy of [Formula: see text] and [Formula: see text] for each species, respectively, even in combined mixtures. A second experiment was conducted on mixes containing two other gasses, Xylene and Limonene, acting as interferents. Further 256 spectra were acquired on 8 new mixes, from which two models were developed to predict CH2Cl2 and C6H12, obtaining NRMSD values of 6.4% and 13.9%, respectively

    Sensory quality control of alcoholic beverages using fast chemical sensors

    Get PDF
    Control de calidad sensorial de bebidas alcohólicas utilizando råpidos sensores químicosEn la presente tesis Doctoral, han sido aplicados dos sensores artificiales para el anålisis debebidas alcohólicas: la nariz electrónica basada en la espectrometría de masas (MS) y la lenguaelectrónica basada en la espectroscopía infrarroja con transformada de Fourier (FTIR). Elpropósito fue desarrollar nuevas estrategias para analizar la autenticidad de estos productos,desde un punto de vista sensorial, por medio de técnicas las espectrales antes mencionadas.Adicionalmente, ha sido utilizado un espectrofotómetro UV-visible como ojo electrónico. Eltrabajo presentado pretende ser un avance significativo hacia el desarrollo de un catadorelectrónico mediante la fusión de los tres sensores químicos: nariz electrónica, lenguaelectrónica y ojo electrónico.Sensory quality control of alcoholic beverages using fast chemical sensorsIn the present Doctoral Thesis, two chemical artificial sensors are applied to the analysis ofalcoholic beverages: the Mass Spectrometry (MS)-based electronic-noses and Fouriertransform infrared (FTIR)-based electronic-tongue. The aim was developing new strategies totest the authenticity of these products, from a sensory point of view, by means of the spectraltechniques above mentioned. Additionally, has been used an UV-visible spectrophotometer aselectronic eye. The work presented wants to be a significant advance towards the developmentof an electronic taster through the fusion of three chemical sensors: electronic nose, electronictongue and electronic eye

    Instrumental and chemometric methodologies to assess sensory quality of Mediterranean food

    Get PDF
    L'oli d'oliva, el vi o els fruits secs sĂłn productes tĂ­pics de la regiĂł MediterrĂ nia que ofereixen un valor afegit grĂ cies als seus beneficis per a la salut i excel·lents caracterĂ­stiques sensorials. Per aquest motiu Ă©s necessari un control de la qualitat i autenticitat d'aquests productes, que sĂłn altament susceptibles a fraus i adulteracions. Un aspecte important Ă©s l'avaluaciĂł de la qualitat sensorial, que descriu parĂ metres percebuts pels sentits (gust, visiĂł, olor i tacte) mitjançant panells validats i entrenats d'experts. Aquests panells tendeixen a ser subjectius i requereixen llargs temps d'anĂ lisi i alts costos. Com a conseqĂŒĂšncia hi ha hagut un increment en el desenvolupament de tĂšcniques d'anĂ lisi capaces de simular les respostes obtingudes amb el panell de tast humĂ . L'anomenat 'panell electrĂČnic' ofereix respostes objectives mitjançant l'Ășs de tĂšcniques multivariants que permeten establir correlacions entre els descriptors definits pels humans i els senyals obtingudes instrumentalment. Aquesta tesi pretĂ©n oferir tĂšcniques instrumentals alternatives, rĂ pides i senzilles per determinar la qualitat sensorial d'aliments com l'oli d'oliva, el vi o les ametlles. Els estudis duts a terme inclouen el tractament de les respostes sensorials obtingudes mitjançant metodologies de referĂšncia (principalment panells de tast humans), l'optimitzaciĂł dels procediments analĂ­tics per treballar amb tĂšcniques instrumentals i el desenvolupament d'eines quimiomĂštriques adequades per construir els models multivariants. TambĂ© s'han desenvolupat estratĂšgies de fusiĂł de dades per combinar les diferents dades instrumentals que simulen els sentits humans (olor, gust i visiĂł).El aceite de oliva, el vino o los frutos secos son productos tĂ­picos de la regiĂłn MediterrĂĄnea que ofrecen un valor añadido gracias a sus beneficios para la salud y excelentes caracterĂ­sticas sensoriales. Por este motivo es necesario un control de la calidad y autenticidad de estos productos, que son altamente susceptibles a fraudes y adulteraciones. Un aspecto importante es la evaluaciĂłn de la calidad sensorial, que describe parĂĄmetros percibidos por los sentidos (gusto, visiĂłn, olor y tacto) mediante paneles validados y entrenados de expertos. Estos paneles tienden a ser subjetivos, requieren largos tiempos de anĂĄlisis y altos costes. Como consecuencia ha habido un incremento en el desarrollo de tĂ©cnicas de anĂĄlisis capaces de simular las respuestas obtenidas con el panel de cata humano. El llamado 'panel electrĂłnico' ofrece respuestas objetivas mediante el uso de tĂ©cnicas multivariantes que permiten establecer correlaciones entre los descriptores definidos por los humanos y las señales obtenidas instrumentalmente. Esta tesis pretende ofrecer tĂ©cnicas instrumentales alternativas, rĂĄpidas y sencillas para determinar la calidad sensorial de alimentos como el aceite de oliva, el vino o las almendras. Los estudios llevados a cabo incluyen el tratamiento de las respuestas sensoriales obtenidas mediante metodologĂ­as de referencia (principalmente paneles de cata humanos), la optimizaciĂłn de los procedimientos analĂ­ticos para trabajar con tĂ©cnicas instrumentales y el desarrollo de herramientas quimiomĂ©tricas adecuadas para construir los modelos multivariantes. TambiĂ©n se han desarrollado estrategias de fusiĂłn de datos para combinar los diferentes datos instrumentales que simulan los sentidos humanos (olor, gusto y visiĂłn).Olive oil, wine or nuts are typical products of the Mediterranean region that offer added value thanks to its health benefits and excellent sensory characteristics. Therefore, the control the quality and authenticity of these products is necessary, mainly because they are highly susceptible to fraud and adulterations. An important aspect is the evaluation of sensory quality that describe parameters perceived by the senses (taste, sight, smell and touch) using validated and trained panels of experts. These panels tend to be subjective, requiring long-time analysis and high costs. As a result there has been an increase in the development of analytical techniques capable to simulate the responses obtained with the human taste panel. The so-called 'electronic panel' provides objective responses using multivariate techniques, which establish correlations between descriptors defined by humans and signals obtained instrumentally. This thesis aims to offer fast and simple alternative instrumental techniques to determine the sensory quality of foods such as olive oil, wine and almonds. Studies carried out include the treatment of sensory responses obtained by reference methodologies (mainly human taste panels), optimization of analytical procedures to work with instrumental techniques and the development of appropriate chemometric tools to build multivariate models. Data fusion strategies have also been studied by combining different instrumental data that simulate the human senses (smell, taste and sight)

    Electronic noses and tongues to assess food authenticity and adulteration

    Full text link
    [EN] Background: There is a growing concern for the problem of food authenticity assessment (and hence the detection of food adulteration), since it cheats the consumer and can pose serious risk to health in some instances. Unfortunately, food safety/integrity incidents occur with worrying regularity, and therefore there is clearly a need for the development of new analytical techniques. Scope and approach: In this review, after briefly commenting the principles behind the design of electronic noses and electronic tongues, the most relevant contributions of these sensor systems in food adulteration control and authenticity assessment over the past ten years are discussed. It is also remarked that future developments in the utilization of advanced sensors arrays will lead to superior electronic senses with more capabilities, thus making the authenticity and falsification assessment of food products a faster and more reliable process. Key findings and conclusions: The use of both types of e-devices in this field has been steadily increasing along the present century, mainly due to the fact that their efficiency has been significantly improved as important developments are taking place in the area of data handling and multivariate data analysis methods. (C) 2016 Elsevier Ltd. All rights reserved.Peris Tortajada, M.; Escuder Gilabert, L. (2016). Electronic noses and tongues to assess food authenticity and adulteration. Trends in Food Science and Technology. 58:40-54. doi:10.106/j.tifs.2016.10.014S40545

    Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    Get PDF
    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry

    Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods

    Full text link
    [EN] Cocoa (Theobroma cacao L.) and its derivatives are appreciated for their aroma, color, and healthy properties, and are commodities of high economic value worldwide. Wide ranges of conventional methods have been used for years to guarantee cocoa quality. Recently, however, demand for global cocoa and the requirements of sensory, functional, and safety cocoa attributes have changed. On the one hand, society and health authorities are increasingly demanding new more accurate quality control tests, including not only the analysis of physicochemical and sensory parameters, but also determinations of functional compounds and contaminants (some of which come in trace quantities). On the other hand, increased production forces industries to seek quality control techniques based on fast, nondestructive online methods. Finally, an increase in global cocoa demand and a consequent rise in prices can lead to future cases of fraud. For this reason, new analytes, technologies, and ways to analyze data are being researched, developed, and implemented into research or quality laboratories to control cocoa quality and authenticity. The main advances made in destructive techniques focus on developing new and more sensitive methods such as chromatographic analysis to detect metabolites and contaminants in trace quantities. These methods are used to assess cocoa quality; study new functional properties; control cocoa authenticity; or detect frequent emerging frauds. Regarding nondestructive methods, spectroscopy is the most explored technique, which is conducted within the near infrared range, and also within the medium infrared range to a lesser extent. It is applied mainly in the postharvest stage of cocoa beans to analyze different biochemical parameters or to assess the authenticity of cocoa and its derivatives.The authors wish to acknowledge the financial assistance provided by the Spanish Government and European Regional Development Fund (Project RTC-2016-5241-2). Maribel Quelal VĂĄsconez thanks the Ministry Higher Education, Science, Technology, and Innovation (SENESCYT) of the Republic of Ecuador for her PhD grant.Quelal-VĂĄsconez, MA.; Lerma-GarcĂ­a, MJ.; PĂ©rez-Esteve, É.; Talens Oliag, P.; Barat Baviera, JM. (2020). Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods. Comprehensive Reviews in Food Science and Food Safety. 19(2):448-478. https://doi.org/10.1111/1541-4337.12522S448478192Abdullahi, G., Muhamad, R., Dzolkhifli, O., & Sinniah, U. R. (2018). Analysis of quality retentions in cocoa beans exposed to solar heat treatment in cardboard solar heater box. Cogent Food & Agriculture, 4(1), 1483061. doi:10.1080/23311932.2018.1483061Abt, E., Fong Sam, J., Gray, P., & Robin, L. P. (2018). Cadmium and lead in cocoa powder and chocolate products in the US Market. Food Additives & Contaminants: Part B, 11(2), 92-102. doi:10.1080/19393210.2017.1420700Acierno, V., Alewijn, M., Zomer, P., & van Ruth, S. M. (2018). Making cocoa origin traceable: Fingerprints of chocolates using Flow Infusion - Electro Spray Ionization - Mass Spectrometry. Food Control, 85, 245-252. doi:10.1016/j.foodcont.2017.10.002Aculey, P. C., Snitkjaer, P., Owusu, M., Bassompiere, M., Takrama, J., NĂžrgaard, L., 
 Nielsen, D. S. (2010). Ghanaian Cocoa Bean Fermentation Characterized by Spectroscopic and Chromatographic Methods and Chemometrics. Journal of Food Science, 75(6), S300-S307. doi:10.1111/j.1750-3841.2010.01710.xAfoakwa, E. O., Paterson, A., Fowler, M., & Ryan, A. (2009). Matrix effects on flavour volatiles release in dark chocolates varying in particle size distribution and fat content using GC–mass spectrometry and GC–olfactometry. Food Chemistry, 113(1), 208-215. doi:10.1016/j.foodchem.2008.07.088Afoakwa, E. O., Quao, J., Takrama, J., Budu, A. S., & Saalia, F. K. (2011). Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. Journal of Food Science and Technology, 50(6), 1097-1105. doi:10.1007/s13197-011-0446-5Alander, J. T., Bochko, V., Martinkauppi, B., Saranwong, S., & Mantere, T. (2013). A Review of Optical Nondestructive Visual and Near-Infrared Methods for Food Quality and Safety. International Journal of Spectroscopy, 2013, 1-36. doi:10.1155/2013/341402Álvarez, C., PĂ©rez, E., Cros, E., Lares, M., Assemat, S., Boulanger, R., & Davrieux, F. (2012). The Use of near Infrared Spectroscopy to Determine the Fat, Caffeine, Theobromine and (−)-Epicatechin Contents in Unfermented and Sun-Dried Beans of Criollo Cocoa. Journal of Near Infrared Spectroscopy, 20(2), 307-315. doi:10.1255/jnirs.990Agricultural and Processed Food Products Export Development Authority (APEDA). (2015).Export statement. Retrieved fromhttp://agriexchange.apeda.gov.in/indexp/exportstatement.aspxAprotosoaie, A. C., Luca, S. V., & Miron, A. (2015). Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Comprehensive Reviews in Food Science and Food Safety, 15(1), 73-91. doi:10.1111/1541-4337.12180ArĂ©valo-Gardini, E., ArĂ©valo-HernĂĄndez, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of The Total Environment, 605-606, 792-800. doi:10.1016/j.scitotenv.2017.06.122Assa, A., Noor, A., Yunus, M. R., Misnawi, & Djide, M. N. (2018). Heavy metal concentrations in cocoa beans (Theobroma cacaoL.) originating from EastLuwu, South Sulawesi, Indonesia. Journal of Physics: Conference Series, 979, 012011. doi:10.1088/1742-6596/979/1/012011Barbin, D. F., Maciel, L. F., Bazoni, C. H. V., Ribeiro, M. da S., Carvalho, R. D. S., Bispo, E. da S., 
 Hirooka, E. Y. (2018). Classification and compositional characterization of different varieties of cocoa beans by near infrared spectroscopy and multivariate statistical analyses. Journal of Food Science and Technology, 55(7), 2457-2466. doi:10.1007/s13197-018-3163-5Belo, R. F. C., Figueiredo, J. P., Nunes, C. M., Pissinatti, R., Souza, S. V. C. de, & Junqueira, R. G. (2017). Accelerated solvent extraction method for the quantification of polycyclic aromatic hydrocarbons in cocoa beans by gas chromatography–mass spectrometry. Journal of Chromatography B, 1053, 87-100. doi:10.1016/j.jchromb.2017.03.017Belơčak, A., Komes, D., HorĆŸić, D., Ganić, K. K., & Karlović, D. (2009). Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Research International, 42(5-6), 707-716. doi:10.1016/j.foodres.2009.02.018Berrueta, L. A., Alonso-Salces, R. M., & HĂ©berger, K. (2007). Supervised pattern recognition in food analysis. Journal of Chromatography A, 1158(1-2), 196-214. doi:10.1016/j.chroma.2007.05.024Beulens, A. J. M., Broens, D.-F., Folstar, P., & Hofstede, G. J. (2005). Food safety and transparency in food chains and networks Relationships and challenges. Food Control, 16(6), 481-486. doi:10.1016/j.foodcont.2003.10.010Bolliger, S., Zeng, Y., & Windhab, E. J. (1999). In-line measurement of tempered cocoa butter and chocolate by means of near-infrared spectroscopy. Journal of the American Oil Chemists’ Society, 76(6), 659-667. doi:10.1007/s11746-999-0157-5BonvehĂ­, J. S. (2005). Investigation of aromatic compounds in roasted cocoa powder. European Food Research and Technology, 221(1-2), 19-29. doi:10.1007/s00217-005-1147-yBratinova S. Karasek L. Buttinger G. &Wenzl T.(2015).Report on the 16th Interlaboratory comparison organnnsed by the European Union Reference Laboratory for Polycyclic Aromatic Hydrocarbons EUR 27558 15. EU.https://doi.org/10.2787/279750.Brera, C., Grossi, S., & Miraglia, M. (2005). Interlaboratory Study for Ochratoxin A Determination in Cocoa Powder Samples. Journal of Liquid Chromatography & Related Technologies, 28(1), 35-61. doi:10.1081/jlc-200038574Bro, R. (1997). PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2), 149-171. doi:10.1016/s0169-7439(97)00032-4CĂĄdiz-Gurrea, M. L., Lozano-Sanchez, J., Contreras-GĂĄmez, M., Legeai-Mallet, L., FernĂĄndez-Arroyo, S., & Segura-Carretero, A. (2014). Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. Journal of Functional Foods, 10, 485-498. doi:10.1016/j.jff.2014.07.016Cambrai, A., Marcic, C., Morville, S., Sae Houer, P., Bindler, F., & Marchioni, E. (2010). Differentiation of Chocolates According to the Cocoa’s Geographical Origin Using Chemometrics. Journal of Agricultural and Food Chemistry, 58(3), 1478-1483. doi:10.1021/jf903471eCAOBISCO‐ECA‐FCC. (2015).Cocoa beans: Chocolate and cocoa industry quality requirements. Retrieved fromhttp://www.cocoaquality.eu/Caporaso, N., Whitworth, M. B., Fowler, M. S., & Fisk, I. D. (2018). Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans. Food Chemistry, 258, 343-351. doi:10.1016/j.foodchem.2018.03.039CBI. (2016).CBI trade statistics: Cocoa in Europe. Retrieved fromhttps://www.cbi.eu/sites/default/files/market_information/researches/trade-statistics-europe-cocoa-2016.pdfChavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of The Total Environment, 533, 205-214. doi:10.1016/j.scitotenv.2015.06.106Chavez, E., He, Z. L., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., & Baligar, V. C. (2016). Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production. Chemosphere, 150, 57-62. doi:10.1016/j.chemosphere.2016.02.013Chetschik, I., KneubĂŒhl, M., Chatelain, K., SchlĂŒter, A., Bernath, K., & HĂŒhn, T. (2017). Investigations on the Aroma of Cocoa Pulp (Theobroma cacao L.) and Its Influence on the Odor of Fermented Cocoa Beans. Journal of Agricultural and Food Chemistry, 66(10), 2467-2472. doi:10.1021/acs.jafc.6b05008Codex Alimentarius. (2014).Codex Alimentarius Cocoa‐ Cocoa liquor.CODEX STAN 228–2001. (2001).General methods of analysis for contaminants CODEX STAN 228–2001.Cordella, M., Torri, C., Adamiano, A., Fabbri, D., Barontini, F., & Cozzani, V. (2012). Bio-oils from biomass slow pyrolysis: A chemical and toxicological screening. Journal of Hazardous Materials, 231-232, 26-35. doi:10.1016/j.jhazmat.2012.06.030CortĂ©s, V., Blasco, J., Aleixos, N., Cubero, S., & Talens, P. (2019). Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends in Food Science & Technology, 85, 138-148. doi:10.1016/j.tifs.2019.01.015Counet, C., Ouwerx, C., Rosoux, D., & Collin, S. (2004). Relationship between Procyanidin and Flavor Contents of Cocoa Liquors from Different Origins. Journal of Agricultural and Food Chemistry, 52(20), 6243-6249. doi:10.1021/jf040105bCrafack, M., Keul, H., Eskildsen, C. E., Petersen, M. A., Saerens, S., Blennow, A., 
 Nielsen, D. S. (2014). Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate. Food Research International, 63, 306-316. doi:10.1016/j.foodres.2014.04.032Crouzillat D. Bellanger L. Rigoreau M. Bucheli P. &PĂ©tiard V.(2000).Genetic structure characterisation and selection of Nacional cocoa compared to other genetic groups. In International Workshop on New Technologies and Cocoa Breeding.Cubero-Leon, E., Bouten, K., Senyuva, H., Stroka, J., Adam, M., 
 Bakalova, D. (2017). Determination of Ochratoxin A in Black and White Pepper, Nutmeg, Spice Mix, Cocoa, and Drinking Chocolate by High-Performance Liquid Chromatography Coupled with Fluorescence Detection: Collaborative Study. Journal of AOAC INTERNATIONAL, 100(5), 1458-1468. doi:10.5740/jaoacint.16-0430D’Souza, R. N., Grimbs, S., Behrends, B., Bernaert, H., Ullrich, M. S., & Kuhnert, N. (2017). Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Research International, 99, 550-559. doi:10.1016/j.foodres.2017.06.007Di Mattia, C., Martuscelli, M., Sacchetti, G., Beheydt, B., Mastrocola, D., & Pittia, P. (2014). Effect of different conching processes on procyanidin content and antioxidant properties of chocolate. Food Research International, 63, 367-372. doi:10.1016/j.foodres.2014.04.009Dickens, B., & Dickens, S. H. (1999). Estimation of concentration and bonding environment of water dissolved in common solvents using near infrared absorptivity. Journal of Research of the National Institute of Standards and Technology, 104(2), 173. doi:10.6028/jres.104.012Tran, P. D., Van de Walle, D., De Clercq, N., De Winne, A., Kadow, D., Lieberei, R., 
 Van Durme, J. (2015). Assessing cocoa aroma quality by multiple analytical approaches. Food Research International, 77, 657-669. doi:10.1016/j.foodres.2015.09.019DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017Elwers, S., Zambrano, A., Rohsius, C., & Lieberei, R. (2009). Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.). European Food Research and Technology, 229(6), 937-948. doi:10.1007/s00217-009-1132-yEuropean Commission (EU). (2011).Commission regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Official Journal of the European Union 215 4–8.Fayeulle, N., Vallverdu-Queralt, A., Meudec, E., Hue, C., Boulanger, R., Cheynier, V., & Sommerer, N. (2018). Characterization of new flavan-3-ol derivatives in fermented cocoa beans. Food Chemistry, 259, 207-212. doi:10.1016/j.foodchem.2018.03.133FCC. (2018 June 20).Services ‐ Rules | The Federation of Cocoa Commerce. Retrieved fromhttp://www.cocoafederation.com/services/rulesForsyth, W. G. C., & Quesnel, V. C. (1957). Cacao polyphenolic substances. 4. The anthocyanin pigments*. Biochemical Journal, 65(1), 177-179. doi:10.1042/bj0650177Franco, R., Oñatibia-Astibia, A., & MartĂ­nez-Pinilla, E. (2013). Health Benefits of Methylxanthines in Cacao and Chocolate. Nutrients, 5(10), 4159-4173. doi:10.3390/nu5104159GarcĂ­a-Alamilla, P., Salgado-Cervantes, M. A., Barel, M., Berthomieu, G., RodrĂ­guez-Jimenes, G. C., & GarcĂ­a-Alvarado, M. A. (2007). Moisture, acidity and temperature evolution during cacao drying. Journal of Food Engineering, 79(4), 1159-1165. doi:10.1016/j.jfoodeng.2006.04.005Gianfredi, V., Salvatori, T., Nucci, D., Villarini, M., & Moretti, M. (2018). Can chocolate consumption reduce cardio-cerebrovascular risk? A systematic review and meta-analysis. Nutrition, 46, 103-114. doi:10.1016/j.nut.2017.09.006Goodacre, R., & Anklam, E. (2001). Fourier transform infrared spectroscopy and chemometrics as a tool for the rapid detection of other vegetable fats mixed in cocoa butter. Journal of the American Oil Chemists’ Society, 78(10), 993-1000. doi:10.1007/s11746-001-0377-xHashimoto, J. C., Lima, J. C., Celeghini, R. M. S., Nogueira, A. B., Efraim, P., Poppi, R. J., & Pallone, J. A. L. (2018). Quality Control of Commercial Cocoa Beans (Theobroma cacao L.) by Near-infrared Spectroscopy. Food Analytical Methods, 11(5), 1510-1517. doi:10.1007/s12161-017-1137-2Hinneh, M., Semanhyia, E., Van de Walle, D., De Winne, A., Tzompa-Sosa, D. A., Scalone, G. L. L., 
 Dewettinck, K. (2018). Assessing the influence of pod storage on sugar and free amino acid profiles and the implications on some Maillard reaction related flavor volatiles in Forastero cocoa beans. Food Research International, 111, 607-620. doi:10.1016/j.foodres.2018.05.064Huang, X., Teye, E., Sam-Amoah, L. K., Han, F., Yao, L., & Tchabo, W. (2014). Rapid measurement of total polyphenols content in cocoa beans by data fusion of NIR spectroscopy and electronic tongue. Anal. Methods, 6(14), 5008-5015. doi:10.1039/c4ay00223gHue, C., Gunata, Z., Bergounhou, A., Assemat, S., Boulanger, R., Sauvage, F. X., & Davrieux, F. (2014). Near infrared spectroscopy as a new tool to determine cocoa fermentation levels through ammonia nitrogen quantification. Food Chemistry, 148, 240-245. doi:10.1016/j.foodchem.2013.10.005Hue, C., Gunata, Z., Breysse, A., Davrieux, F., Boulanger, R., & Sauvage, F. X. (2016). Impact of fermentation on nitrogenous compounds of cocoa beans (Theobroma cacao L.) from various origins. Food Chemistry, 192, 958-964. doi:10.1016/j.foodchem.2015.07.115Humston, E. M., Knowles, J. D., McShea, A., & Synovec, R. E. (2010). Quantitative assessment of moisture damage for cacao bean quality using two-dimensional gas chromatography combined with time-of-flight mass spectrometry and chemometrics. Journal of Chromatography A, 1217(12), 1963-1970. doi:10.1016/j.chroma.2010.01.069ICCO. (2012).Physical and chemical information on cocoa beans butter mass and powder. Retrieved fromhttps://www.icco.org/faq/61-physical-and-chemical-information-on-cocoa/106-physical-and-chemical-information-on-cocoa-beans-butter-mass-and-powder.htmlICCO. (2018).How is the quality of cocoa checked—by hand by machine?Retrieved fromhttps://www.icco.org/faq/59-fermentation-a-drying/108-how-is-the-quality-of-cocoa-checked-by-hand-by-machine.htmlICCO. (2019).Leading countries of cocoa bean processing worldwide 2018/2019 | Statista. Retrieved fromhttps://www.statista.com/statistics/238242/leading-countries-of-global-cocoa-bean-processing/Ioannone, F., Di Mattia, C. D., De Gregorio, M., Sergi, M., Serafini, M., & Sacchetti, G. (2015). Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chemistry, 174, 256-262. doi:10.1016/j.foodchem.2014.11.019Ishaq, S., & Jafri, L. (2017). Biomedical Importance of Cocoa (Theobroma cacao): Significance and Potential for the Maintenance of Human Health. Matrix Science Pharma, 1(1), 1-5. doi:10.26480/msp.01.2017.01.05Jackson E. Farrington D. S. &Henderson K.(1986).The analysis of agricultural materials: A manual of the analytical methods used by the Agricultural Development and Advisory Service. The Analysis of Agricultural Materials: A Manual of the Analytical Methods Used by the Agricultural Development and Advisory Service (No. 427 (Ed. 3)).Jahurul, M. H. A., Soon, Y., Shaarani Sharifudin, M., Hasmadi, M., Mansoor, A. H., Zaidul, I. S. M., 
 Jinap, S. (2018). Bambangan (Mangifera pajang ) kernel fat: a potential new source of cocoa butter alternative. International Journal of Food Science & Technology, 53(7), 1689-1697. doi:10.1111/ijfs.13753Jinap, S., Thien, J., & Yap, T. N. (1994). Effect of drying on acidity and volatile fatty acids content of cocoa beans. Journal of the Science of Food and Agriculture, 65(1), 67-75. doi:10.1002/jsfa.2740650111Kongor, J. E., Hinneh, M., de Walle, D. V., Afoakwa, E. O., Boeckx, P., & Dewettinck, K. (2016). Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile — A review. Food Research International, 82, 44-52. doi:10.1016/j.foodres.2016.01.012KrĂ€hmer, A., Engel, A., Kadow, D., Ali, N., Umaharan, P., Kroh, L. W., & Schulz, H. (2015). Fast and neat – Determination of biochemical quality parameters in cocoa using near infrared spectroscopy. Food Chemistry, 181, 152-159. doi:10.1016/j.foodchem.2015.02.084KrĂ€hmer, A., Gudi, G., Weiher, N., Gierus, M., SchĂŒtze, W., & Schulz, H. (2013). Characterization and quantification of secondary metabolite profiles in leaves of red and white clover species by NIR and ATR-IR spectroscopy. Vibrational Spectroscopy, 68, 96-103. doi:10.1016/j.vibspec.2013.05.012Kruszewski, B., ObiedziƄski, M. W., & Kowalska, J. (2018). Nickel, cadmium and lead levels in raw cocoa and processed chocolate mass materials from three different manufacturers. Journal of Food Composition and Analysis, 66, 127-135. doi:10.1016/j.jfca.2017.12.012KubĂ­c̆kovĂĄ, A., KubĂ­c̆ek, V., & Coufal, P. (2011). UV-VIS detection of amino acids in liquid chromatography: Online post-column solid-state derivatization with Cu(II) ions. Journal of Separation Science, 34(22), 3131-3135. doi:10.1002/jssc.201100561Kucha, C., Liu, L., & Ngadi, M. (2018). Non-Destructive Spectroscopic Techniques and Multivariate Analysis for Assessment of Fat Quality in Pork and Pork Products: A Review. Sensors, 18(2), 377. doi:10.3390/s18020377Kumari, N., Grimbs, A., D’Souza, R. N., Verma, S. K., Corno, M., Kuhnert, N., & Ullrich, M. S. (2018). Origin and varietal based proteomic and peptidomic fingerprinting of Theobroma cacao in non-fermented and fermented cocoa beans. Food Research International, 111, 137-147. doi:10.1016/j.foodres.2018.05.010Kutsanedzie, F. Y. H., Chen, Q., Hassan, M. M., Yang, M., Sun, H., & Rahman, M. H. (2018). Near infrared system coupled chemometric algorithms for enumeration of total fungi count in cocoa beans neat solution. Food Chemistry, 240, 231-238. doi:10.1016/j.foodchem.2017.07.117Andres-Lacueva, C., Monagas, M., Khan, N., Izquierdo-Pulido, M., Urpi-Sarda, M., Permanyer, J., & Lamuela-RaventĂłs, R. M. (2008). Flavanol and Flavonol Contents of Cocoa Powder Products: Influence of the Manufacturing Process. Journal of Agricultural and Food Chemistry, 56(9), 3111-3117. doi:10.1021/jf0728754Langer, S., Marshall, L. J., Day, A. J., & Morgan, M. R. A. (2011). Flavanols and Methylxanthines in Commercially Available Dark Chocolate: A Study of the Correlation with Nonfat Cocoa Solids. Journal of Agricultural and Food Chemistry, 59(15), 8435-8441. doi:10.1021/jf201398tLevasseur-Garcia, C. (2018). Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley). Toxins, 10(1),

    Development of chicken polyclonal and mouse monoclonal-based enyzyme immunoassays for the detection of ÎČ-cyclocitral in catfish pond water

    Get PDF
    The Catfish industry faces a problem of off-flavors due to odorous compounds produced by cyanobacteria and blue-green algae. Beta-Cyclocitral imparts a hay-woody odor to pond water and fish tissues. At present there are no reliable pond treatment methods available to control these off-flavors. To monitor the levels of this compound for quality control, rapid, sensitive and inexpensive methods are needed. The major goal of this study was to develop enzyme-linked immunoflow assays based on monoclonal and polyclonal antibodies that are specific and sensitive enough to detect beta-cyclocitral in catfish pond water. Beta-Cyclocitral-PPD conjugate was prepared and used to immunize two chickens and two mice for the production of polyclonal and monoclonal antibodies against beta-cyclocitral respectively. Monospecific polyclonal antibodies were purified from the eggs laid by the immunized chickens, using affinity chromatography. For the production of the monoclonal antibodies, hybridoma cells were made by fusion of myeloma cells and spleen cells of the mice that showed high antibody titer and specificity. Hybridoma cells that secreted high affinity monoclonal antibodies were cloned by the limiting dilution method and at least 10 hybridoma cell lines positive for anti-beta-cyclocitral antibodies were established. Immunochemical methods based on anti-beta-cyclocitral IgY and IgG were developed. The two ELISAs based on IgY and IgG had a limit of detection of 1.0 ng/mL and respective I50 values of 3.93 and 7.98 ng/mL. Two enzyme-linked-immunoflow (ELIFA) assays were developed based on the ELISAs. The ELIFAs were very easy to perform but were less sensitive than the ELISAs as shown by their I50 of 46 ug/mL for the IgY-based ELIFA and 93 ug/mL for the IgG-based ELIFA. Further investigations are required for the more efficient recovery of the monoclonal antibodies, to validate the ELISAs, to improve the sensitivity of the ELIFAs and to determine the potential to adapt the developed assays to a kit format for use by the catfish industry and water treatment industries as well as other aquaculture industries

    Utilizing Headspace Solid-Phase Microextraction for the Characterization of Volatile Organic Compounds Released from Contraband and its Implications for Detector Dog Training

    Get PDF
    Improving the accuracy and reliability of odor detection dogs is of utmost importance particularly for legal reasons. Field testing in conjunction with headspace analysis of volatile organic compounds (VOCs) has in recent times allowed for these improvements, by providing scientifically based recommendations for optimum training protocols. The current project leveraged on these established capabilities to enhance three areas of odor detection: illicit drugs, explosives and mass storage devices. With hemp being legalized under the 2018 Farm Bill, legal questions have been raised regarding a dog’s ability to ignore hemp if trained to detect marijuana, as both are types of Cannabis. Results concluded that most dogs do alert to hemp; however, they can be successfully trained over time to discriminate between hemp and marijuana. Headspace analysis showed marked similarities between sets of both products with minor differences. These differences can be further investigated to determine if characteristic marijuana VOCs exist that can be included in canine training regimens. Other tests showed that dogs imprinted on current marijuana odor mimics can falsely respond to hemp as the VOC components of these mimics are not specific to marijuana. These mimics should therefore be avoided for further training purposes. Dogs have been trained to detect and locate explosives such as triacetone triperoxide (TATP) that cannot be detected by most instrumental detectors. Headspace analysis showed TATP consisting primarily of the TATP molecule with relatively smaller amounts of the precursor acetone. Field tests determined that dogs imprinted on TATP may also falsely respond solely to the precursors acetone or hydrogen peroxide and as a result, additional training to ignore these VOCs should be considered. Detection of mass storage device (MSDs) is a relatively new field with little understanding of optimum training methods for dogs. Headspace analysis of various MSDs showed that they do have characteristic VOCs that can allow for successful odor detection with specificity. Additionally, the validity of 1-hydroxyclohexylphenyl ketone and triphenylphosphine oxide (TPPO) as training compounds were also investigated. 1-hydroxyclohexylphenyl ketone was detected in MSDs but also in other electronic controls while TPPO was not detected in MSD components
    • 

    corecore