387 research outputs found

    The Art of Waiting – Interactive displays in healthcare settings

    Get PDF
    Waiting in healthcare settings can be an anxious and fearful experience for children and their families. Opportunities for play are an important part of child-friendly healthcare and have been shown to reduce waiting anxiety. Conventional toys and games, however, usually have contact surfaces through which infections may be passed. Additionally, they often require fine motor movements which may not be available to children with disabilities. In this paper, we describe the design of an accessible and interactive large display to meet the needs of a hospital waiting room. We discuss the detailed design requirements, the participatory process by which the design was developed, and our plans to evaluate the efficacy of the interactive display for reducing waiting anxiety in healthcare settings

    High cable forces deteriorate pinch force control in voluntary-closing body-powered prostheses

    Get PDF
    It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Body-powered prostheses (BPPs) provide the user with direct proprioceptive feedback. Currently available BPPs often require high cable operation forces, which complicates control of the forces at the terminal device. The aim of this study is to quantify the influence of high cable forces on object manipulation with voluntary-closing prostheses. Able-bodied male subjects were fitted with a bypass-prosthesis with low and high cable force settings for the prehensor. Subjects were requested to grasp and transfer a collapsible object as fast as they could without dropping or breaking it. The object had a low and a high breaking force setting. Subjects conducted significantly more successful manipulations with the low cable force setting, both for the low (33 % more) and high (50 %) object’s breaking force. The time to complete the task was not different between settings during successful manipulation trials. In conclusion: high cable forces lead to reduced pinch force control during object manipulation. This implies that low cable operation forces should be a key design requirement for voluntary-closing BPPs

    A pin-array method for capturing tissue deformation under defined pressure distributions and its application to prosthetic socket design

    Get PDF
    The Fit4Purpose project aims to develop upper limb prosthetic devices which are suitable for deployment in lower- and middle-income countries (LMIC's). Open-frame trans-radial socket designs are being considered, formed of several, linked components, including pads which interface directly with the skin surface. A mechanical tool has been developed to aid the design of pad shapes, using an array of square brass bars of varying lengths (i.e. a pin-array) to apply a chosen normal pressure distribution to an area of tissue. The shape to which the tissue is displaced can then be captured by clamping the bars together to fix their relative positions. The device is described, then three short studies are used to demonstrate its use on the forearm of a single, anatomically intact subject. The first investigates the effect of array size on the measured surface stiffness, finding an inverse relationship with a similar characteristic to previous published results. The second tests the hypothesis that a pad with a shape which duplicates that captured by the device will generate a similar overall load to the original pins if applied to the same region of tissue. The results support the hypothesis, but also highlight the sensitivity of the interface loading to the underlying muscle activation. Finally, the tool is used to demonstrate that different tissue displacements are observed when the same pressure distribution is applied to different areas of the forearm. Whilst the tool itself is a simple device, and the techniques used are not sophisticated, the studies suggest that the approach could be useful in pad design. Although it is clearly not appropriate for clinical application in its current form, there may be potential to develop the concept into a more practical device. Other applications could include the design of other devices which interface with the skin, the generation of data for validation of finite element models, including the application of known pressure distributions and tissue deformations during Magnetic Resonance Imaging, and the assessment of matrix pressure sensing devices on compliant materials with complex geometries

    Design and testing of a textile EMG sensor for prosthetic control

    Get PDF
    Nowadays, Electromyography (EMG) signals generated by the amputee’s residual limbs are widely used for the control of myoelectric prostheses, usually with the aid of pattern-recognition algorithms. Since myoelectric prostheses are wearable medical devices, the sensors that integrate them should be appropriate for the users’ daily life, meeting the requirements of lightness, flexibility, greater motion identification, and skin adaptability. Therefore, this study aims to design and test an EMG sensor for prosthetic control, focusing on aspects such as adjustability, lightness, precise and constant signal acquisition; and replacing the conventional components of an EMG sensor with textile materials. The proposed sensor was made with Shieldex Technik-tex P130 + B conductive knitted fabric, with 99% pure silver plating. EMG data acquisition was performed twice on three volunteers: one with the textile sensor, and other with a commercial sensor used in prosthetic applications. Overall, the textile and the commercial sensor presented total average Signal-to-Noise Ratio (SNR) values of 10.24 ± 5.45 dB and 11.74 ± 8.64 dB, respectively. The authors consider that the obtained results are promising and leave room for further improvements in future work, such as designing strategies to deal with known sources of noise contamination and to increase the adhesion to the skin. In sum, the results presented in this paper indicate that, with the appropriate improvements, the proposed textile sensor may have the potential of being used for myoelectric prosthetic control, which can be a more ergonomic and accessible alternative to the sensors that are currently used for controlling these devices.This work is financed by Project “Deus ex Machina”, NORTE-01-0145-FEDER-000026, funded by CCDRN, through Sistema de Apoio à Investigação Científica e Tecnológica (Projetos Estruturados I&D&I) of Programa Operacional Regional do Norte, from Portugal 2020 and by Project UID/CTM/00264/2019 of 2C2T –Centro de Ciência e TecnologiaTêxtil, funded by National Founds through FCT/MCTES

    R2Play development: Fostering user-driven technology that supports return-to-play decision-making following pediatric concussion

    Get PDF
    ObjectiveTo design a multi-domain return-to-play assessment system (R2Play) for youth athletes with concussion.MethodsThe R2Play system was developed using an overarching user-centered approach, the Design Thinking Framework, and research activities included: 1) structured brainstorming within our research team, 2) interviews with clinician and youth sports coaches, 3) building a testable prototype, and 4) interface testing through cognitive walkthroughs with clinician partners.ResultsClinician and coach participants provided feedback on the R2Play concept, which was integrated into the design process and provided future directions for research. Examples of feedback-driven design choices included reducing assessment time, increasing ecological validity by adding in background noise, and developing youth-friendly graphical results screens. Following refinement based on stakeholder feedback, the R2Play system was outlined in detail and a testable prototype was developed. It is made up of two parts: a clinician tablet, and a series of tablet “buttons” that display numbers and letters. Youth athletes run between the buttons to connect a “trail” in ascending alphanumeric order, 1-A-2-B, etc. Their performance across a series of levels of increasing difficulty is logged on the clinician tablet. Initial testing with five clinicians showed the system's interface to have excellent usability with a score of 81% (SD = 8.02) on the System Usability Scale.ConclusionThrough this research, a prototype of the R2Play system was innovated and evaluated by clinician and coach stakeholders. Initial usability was excellent and directions for future iterations were highlighted. Outcomes suggest the potential benefits of using technologies to assist in complex clinical assessment, as well as utilizing a user-centered approach to design

    Media device ownership and media use: Associations with sedentary time, physical activity and fitness in English youth

    Get PDF
    The aim of this study was to determine whether ownership and use of electronic media were associated with sedentary time and cardiorespiratory fitness (fitness) in youth. We also aimed to determine if associations were independent of physical activity (PA).Fitness was measured using the 20 m shuttle-run. PA, sedentary time, ownership of media devices and media use were self-reported.Participants (n = 678, age 10-15 years) reported daily sedentary time of 620 (±. 210) min. Forty-one percent of participants had low PA and 50.4% had low fitness.Higher weekend sedentary time was associated with low fitness in girls (p = 0.005) and boys (p . 10 h or ~. 85% of each waking day sedentary. Use of social media was associated with higher sedentary time in both sexes and with low fitness in girls. Reducing social media use in youth offers one potential target for intervention. Behaviours associated with sedentary time differed from predictors of low fitness. The complex and often sex-specific interactions identified between sedentary time, PA and fitness suggest the need for carefully targeted interventions to reduce sedentary time and improve fitness in English youth

    Comparison of hospital charge prediction models for gastric cancer patients: neural network vs. decision tree models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, artificial neural network is advocated in modeling complex multivariable relationships due to its ability of fault tolerance; while decision tree of data mining technique was recommended because of its richness of classification arithmetic rules and appeal of visibility. The aim of our research was to compare the performance of ANN and decision tree models in predicting hospital charges on gastric cancer patients.</p> <p>Methods</p> <p>Data about hospital charges on 1008 gastric cancer patients and related demographic information were collected from the First Affiliated Hospital of Anhui Medical University from 2005 to 2007 and preprocessed firstly to select pertinent input variables. Then artificial neural network (ANN) and decision tree models, using same hospital charge output variable and same input variables, were applied to compare the predictive abilities in terms of mean absolute errors and linear correlation coefficients for the training and test datasets. The transfer function in ANN model was sigmoid with 1 hidden layer and three hidden nodes.</p> <p>Results</p> <p>After preprocess of the data, 12 variables were selected and used as input variables in two types of models. For both the training dataset and the test dataset, mean absolute errors of ANN model were lower than those of decision tree model (1819.197 vs. 2782.423, 1162.279 vs. 3424.608) and linear correlation coefficients of the former model were higher than those of the latter (0.955 vs. 0.866, 0.987 vs. 0.806). The predictive ability and adaptive capacity of ANN model were better than those of decision tree model.</p> <p>Conclusion</p> <p>ANN model performed better in predicting hospital charges of gastric cancer patients of China than did decision tree model.</p

    A systematic review and meta-analysis of interventions to increase physical activity in children and adolescents with intellectual disabilities

    Get PDF
    Background: Increasing physical activity (PA) through intervention can promote physical and mental health benefits in children and adolescents. However, children and adolescents with intellectual disabilities (ID) have consistently been shown to engage in low levels of PA, which are insufficient for long-term health. Despite this, little is known about the effectiveness of interventions to increase PA in children and adolescents with ID. The aims of this study were therefore to systematically review how effective interventions are at increasing PA levels in children and adolescents with ID and to further examine what components have been used in these interventions. Method: A systematic search of MEDLINE, EMBASE, Education Resources Information Center, Cumulative Index to Nursing and Allied Health Literature, PsychINFO, Cochrane Central Register for Controlled Trials and International Standard Randomised Controlled Trial Number trials registry was conducted (up to July 2016). Articles were included if they met the following eligibility criteria: children and adolescents (&lt;18 years) with ID, measurement of PA at baseline and post-intervention and intervention studies. Effect sizes were calculated as standardised mean difference (d) and meta-analysis calculated between intervention and no treatment control intervention. Results: Five studies met the eligibility criteria and were included in the review. Study design, methodological quality and intervention components were varied. Interventions did not support sufficient changes in PA to improve health. The meta-analysis demonstrated that intervention groups were not more effective at increasing PA levels post-intervention (d: 2.20; 95% CI −0.57 to 0.97) compared with control. However, due to a decrease in PA in the control intervention, a moderate significant effect was demonstrated at follow-up (d: 0.49; 95% CI 0.14 to 0.84). Conclusions: There is a lack of studies which aim to increase PA levels in children and adolescents with ID, with current interventions ineffective. Future studies are required before accurate recommendations for appropriate intervention design and components can be made

    Hard-wired epimysial recordings from normal and reinnervated muscle using a bone-anchored device

    Get PDF
    Background: A combined approach for prosthetic attachment and control using a transcutaneous bone-anchored device and implanted muscle electrodes can improve function for upper-limb amputees. The bone-anchor provides a transcutaneous feed-through for muscle signal recording. This approach can be combined with targeted muscle reinnervation (TMR) to further improve myoelectric control. Methods: A bone-anchored device was implanted trans-tibially in n = 8 sheep with a bipolar recording electrode secured epimysially to the peroneus tertius muscle. TMR was carried out in a single animal: the peroneus tertius was deinnervated and the distal portion of the transected nerve to the peroneus muscle was coapted to a transected nerve branch previously supplying the tibialis anterior muscle. For 12 weeks (TMR) or 19 weeks (standard procedure), epimysial muscle signals were recorded while animals walked at 2 km·h−1. Results: After 19 weeks implantation following standard procedure, epimysial recording signal-to-noise ratio (SNR) was 18.7 dB (± 6.4 dB, 95% CI) with typical recordings falling in the range 10–25 dB. Recoveries in gait and muscle signals were coincident 6 weeks post-TMR; initial muscle activity was identifiable 3 weeks post-TMR though with low signal amplitude and signal-to-noise ratio compared with normal muscle recordings. Conclusions: Following recovery, muscle signals were recorded reliably over 19 weeks following implantation. In this study, targeted reinnervation was successful in parallel with bone-anchor implantation, with recovery identified 6 weeks after surger
    corecore