59 research outputs found

    Effects of curing conditions on shrinkage of alkali-activated high-MgO Swedish slag concrete

    Get PDF
    This study aimed to determine the effects of curing regime on shrinkage of alkali-activated concretes produced from a Swedish high-MgO blast furnace slag. Sodium carbonate (SC), sodium silicate (SS), and their combination were used as alkali activators. The studied curing procedure included heat-treatment, no heat-treatment, sealed and non-sealed conditions. The heat curing increased the compressive strengths of the concretes activated with SS and with the combination of SS and SC. Sealed-curing applied for a period of 1 month reduced the measured drying shrinkage by up to 50% for all studied heat-treated samples. Conversely, the same curing procedure significantly increased the development of the drying shrinkage once the seal was removed after 28 days of curing in the case of the SC-activated concretes non-heat treated. Higher degree of reaction/hydration reached by the binders in these concretes was indicated as the main factor. All of the concretes studied had showed a significant microcracking of the binder matrix, with the most extensive cracking observed in the sealed lab-cured mixes. The heat-cured mixes activated with SS and combination of SC and SS showed the most homogenous microstructure and low extensive micro cracking comparing with lab-cured ones

    Alkali activation of a high MgO GGBS – fresh and hardened properties

    Get PDF
    In this study, concretes and pastes were produced from a high magnesium oxide (MgO) ground granulated blast furnace slag (magnesium oxide content 16·1 wt%) by alkali activation with various amounts and combinations of sodium carbonate and sodium silicate. Sodium carbonate activators tended to reduce slump compared to sodium silicate at the same dose, and, in contrast to the literature for many blast furnace slags with more moderate magnesium oxide, to shorten the initial and final setting times in comparison with concretes activated by sodium silicate for dosages less than 10 wt%. Higher heat curing temperatures and the use of larger dosages of alkali activators resulted in higher early-age compressive cube strength values. The X-ray diffraction analysis of 7 and 28 d old pastes activated with sodium carbonates revealed formation of gaylussite, calcite, nahcolite and calcium-aluminium-silicate-hydrate (C–A–S–H) gel. Curing at 20°C appeared to promote dissolution of gaylussite and calcite, while heat curing promoted their replacement with C–A–S–H, which also resulted in higher ultimate cube compressive strength values. Conversely, mixes activated with sodium silicate contained less crystalline phases and more disordered gel, which strengthened the binder matrix

    Wide Band Spectrum Monitoring System from 30MHz to 1800MHz with limited Size, Weight and Power Consumption by MRC-100 Satellite

    Get PDF
    Today, the usage of radio frequencies is steadily increasing based on the continuous development of modern telecommunication technologies, and this, in turn, increases the electromagnetic pollution not only on Earth but also in space. In low Earth orbit, electromagnetic pollution creates some kind of difficulty in controlling nano-satellites. So it is necessary to measure the electromagnetic pollution in the Low Earth Orbit. The basic aim of this paper is to present the capability of designing and developing a PocketQube-class satellite 3-PQ 5 x 5 x 15 cm as a potential continuation of SMOG-1, the fourth satellite of Hungary. The planned scientific payload of MRC- 100 is a wideband spectrum monitoring system for radio frequency smog in the frequency range of 30-2600 MHz on Low Earth Orbit (600 Km). In this paper, we have executed qualifying measurements on the whole system in the frequency range of 30-1800 MHz (first phase), and we calibrated its broadband antenna with a measurement system. We present the capabilities of the wideband spectrum monitoring system to measure radio frequency signals, with the limited size, weight, and power consumption of the designed system. The working spectrum measurement system was tested on the top of the roof of building V1 at BME University and An-echoic chamber, we were able to show that there is significant radio frequency smog caused by the upper HF band, FM band, VHF band, UHF band, LTE band, GSM band, 4G band, and UMTS band. This is relevant to the main mission target of MRC-100

    Creep and long-term properties of alkali-activated Swedish-slag concrete

    Get PDF
    The construction of the future is moving in the direction of environmentally friendly materials and the use of various types of industrial byproducts and wastes. The use of blast furnace slag (BFS) for the production of concrete is one of those alternatives. In this study, pastes and concretes based on high-MgO BFS were alkali activated with 10% by weight sodium carbonate, sodium silicate, and a combination of both. Heat treatment and laboratory curing were applied. The results showed that heat treatment was effective at reducing the drying shrinkage of alkali-activated slag concretes and promoting high early strength. However, the sodium carbonate–activated slag concrete specimens showed a reduction in compressive strength at later ages. All concrete specimens tested exhibited high drying shrinkage; the highest values were for sodium silicate–activated concretes and the lowest were for sodium carbonate–activated concretes. All concretes tested showed very large creep, which was partly related to the small maximum aggregate size (8 mm) and the effects of carbonation. The carbonation depth after 12–24  months was significantly smaller for the heat-treated specimens and for concrete activated with sodium silicate. The carbonation process resulted in a more porous binder matrix, leading to long-term strength loss and increased creep, especially for sodium silicate–activated mixes

    Almond-shell biomass ash (ABA): a greener alternative to the use of commercial alkaline reagents in alkali-activated cement

    Full text link
    [EN] The use of almond-shell biomass ash (ABA) as an alternative component to the commercial reagents used in the activation of blast furnace slag (BFS) systems is investigated. The presence in its chemical composition of a high content of K2O indicate s that it can alkalinize the medium. 100% waste-based mixtures ABA/BFS were studied by micro- and macrostructural tests. A compressive strength of 44 MPa was achieved by the mortar with 25% ABA addition cured for 7 days at 65 °C. The microstructural analysis showed the formation of slightly different C(K)-A-S-H gels to those formed when using KOH. The use of ABA in BFS mortars is shown as a greener alternative for onstruction materials because the replace- ment of synthetic chemical reagents that produced around a 75¿80% of reduction in the values of kgCO2eq/m3 materialWe wish to thank the Spanish Government for project support (MINECO/FEDER-Project RTI2018-09612-B-C21). The authors would like to thank Borges Agricultural & Industrial Nuts for supplying the biomass ash and the Electronic Microscopy Service at the UPV.Soriano Martinez, L.; Font, A.; Tashima, MM.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Bonifacio, T.; Paya Bernabeu, JJ. (2021). Almond-shell biomass ash (ABA): a greener alternative to the use of commercial alkaline reagents in alkali-activated cement. Construction and Building Materials. 290:1-14. https://doi.org/10.1016/j.conbuildmat.2021.123251S11429

    The effect of blast furnace slag/fly ash ratio on setting, strength, and shrinkage of alkali-activated pastes and concretes

    Get PDF
    The aim of this study was to determine the effects of partial fly ash substitution in to a series of alkali-activated concrete based on a high-MgO blast furnace slag BFS. Mixes were activated with various amounts of sodium silicate at alkali modulus (mass ratio SiO2/Na2O) values of 1.0, 0.5, and 0.25. The results showed that, an increase in the fly ash content extended the initial setting time but had very little effect on the final setting time, although the early age compressive strength was decreased. The fly ash addition had no effect on the drying shrinkage but lowered the autogenous shrinkage. The mixes activated with sodium silicate at a lower alkali modulus showed a significantly higher autogenous shrinkage but lower drying shrinkage values. Severe micro cracking of the binder matrix was observed only for mixes without fly ash, activated with sodium silicate solution at higher alkali modulus. Decreasing the alkali modulus resulted in a higher autogenous shrinkage, less micro cracking and a more homogenous structure due to more extensive formation of sodium-aluminate-silicate-hydrate gel (N-A-S-H), promoted by the addition, and more extensive reaction of the fly ash

    Recent progress in low-carbon binders

    Get PDF
    The development of low-carbon binders has been recognized as a means of reducing the carbon footprint of the Portland cement industry, in response to growing global concerns over CO2 emissions from the construction sector. This paper reviews recent progress in the three most attractive low-carbon binders: alkali-activated, carbonate, and belite-ye'elimite-based binders. Alkali-activated binders/materials were reviewed at the past two ICCC congresses, so this paper focuses on some key developments of alkali-activated binders/materials since the last keynote paper was published in 2015. Recent progress on carbonate and belite-ye'elimite-based binders are also reviewed and discussed, as they are attracting more and more attention as essential alternative low-carbon cementitious materials. These classes of binders have a clear role to play in providing a sustainable future for global construction, as part of the available toolkit of cements

    Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    Get PDF
    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry

    Blast furnace slag-Mg(OH)(2) cements activated by sodium carbonate

    Get PDF
    The structural evolution of a sodium carbonate activated slag cement blended with varying quantities of Mg(OH)2 was assessed. The main reaction products of these blended cements were a calcium-sodium aluminosilicate hydrate type gel, an Mg-Al layered double hydroxide with a hydrotalcite type structure, calcite, and a hydrous calcium aluminate phase (tentatively identified as a carbonate-containing AFm structure), in proportions which varied with Na2O/slag ratios. Particles of Mg(OH)2 do not chemically react within these cements. Instead, Mg(OH)2 acts as a filler accelerating the hardening of sodium carbonate activated slags. Although increased Mg(OH)2 replacement reduced the compressive strength of these cements, pastes with 50 wt% Mg(OH)2 still reached strengths of ∼21 MPa. The chemical and mechanical characteristics of sodium carbonate activated slag/Mg(OH)2 cements makes them a potentially suitable matrix for encapsulation of high loadings of Mg(OH)2-bearing wastes such as Magnox sludge

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer
    corecore