391 research outputs found

    Supramolecular glucose oxidase-SWNT conjugates formed by ultrasonication: effect of tube length, functionalization and processing time

    Get PDF
    BACKGROUND: Generation-3 (Gen-3) biosensors and advanced enzyme biofuel cells will benefit from direct electron transfer to oxidoreductases facilitated by single-walled carbon nanotubes (SWNTs). METHODS: Supramolecular conjugates of SWNT-glucose oxidase (GOx-SWNT) were produced via ultrasonic processing. Using a Plackett-Burman experimental design to investigate the process of tip ultrasonication (23 kHz), conjugate formation was investigated as a function of ultrasonication times (0, 5, 60 min) and functionalized SWNTs of various tube lengths (SWNT-X-L), (X = −OH or -COOH and L = 3.0 μm, 7.5 μm). RESULTS: Enzyme activity (K(M), k(cat), k(cat)/K(M), v(max) and n (the Hill parameter)) of pGOx (pristine), sGOx (sonicated) and GOx-SWNT-X-L revealed that sonication of any duration increased both K(M) and k(cat) of GOx but did not change k(cat)/K(M). Functionalized tubes had the most dramatic effect, reducing both K(M) and k(cat) and reducing k(cat)/K(M). UV–vis spectra over the range of 300 to 550 nm of native enzyme-bound FAD (λ(max) at 381 and 452 nm) or the blue-shifted solvated FAD of the denatured enzyme (λ(max) at 377 and 448 nm) revealed that ultrasonication up to 60 minutes had no influence on spectral characteristics of FAD but that the longer SWNTs caused some partial denaturation leading to egress of FAD. Circular dichroism spectral analysis of the 2° structure showed that sonication of any duration caused enrichment in the α-helical content at the sacrifice of the unordered sequences in GOx while the presence of SWNTs, regardless of length and/or functionality, reduced the β-sheet content of pristine GOx. Surface profiling by white light interferometry revealed that ultrasonication produced some aggregation of GOx and that GOx effectively debundled the SWNT. CONCLUSIONS: Supramolecular conjugates formed from shorter, -OH functionalized SWNTs using longer sonication times (60 min) gave the most favored combination for forming bioactive conjugates

    Electrically stimulated gene expression under exogenously applied electric fields

    Get PDF
    Introduction: Electrical stimulation, the application of an electric field to cells and tissues grown in culture to accelerate growth and tight junction formation among endothelial cells, could be impactful in cardiovascular tissue engineering, allotransplantation, and wound healing.Methods: Using Electrical Cell Stimulation And Recording Apparatus (ECSARA), the exploration of the stimulatory influences of electric fields of different magnitude and frequencies on growth and proliferation, trans endothelial electrical resistance (TEER) and gene expression of human endothelia cells (HUVECs) were explored.Results: Within the range of endogenous electrical pulses studied, frequency was found to be more significant (p = 0.05) than voltage in influencing HUVEC gene expression. Localization of Yes Associated Protein (YAP) and expression of CD-144 are shown to be consistent with temporal manifestations of TEER.Discussion: This work introduces the field of electromics, the study of cellular gene expression profiles and their implications under the influence of exogenously applied electric fields. Homology of electrobiology and mechanobiology suggests use of such exogenous cues in tissue and regenerative engineering

    Biofabrication and Evaluation, in vitro and in vivo, of a Dual Responsive Glucose and Lactate Implantable Biosensor in a Piglet Trauma Model

    Get PDF
    With the current state of progress in trauma management by first responders, there is a need for development of an electrochemical biotransducer that can be used with a wireless implantable biosensor system for continual measurement of interstitial glucose and lactate; beginning from the site of the accident and en-route to a trauma center. Fabrication of oxidoreductase enzyme-rich biorecognition membranes deposited via pyrrole electropolymerization at microfabricated electrodes has been achieved. This construct was then electrochemically overoxidzed to create a non-conductive enzyme-hosting polymer film and finally the entire biotransducer was coated with a phosphorylcholine-containing biomimetic hydrogel to mitigate biofouling and reduce the foreign body response. A catalytic layer of Ni-hexacyanoferrate placed at the electrode-enzyme interface for enhanced peroxide response produced a 20-fold increase (14.19 nA vs. 0.7 nA) in buffered H2O2 measured at 650 mV vs. Ag/AgCl. In vitro characterization showed a sensitivity of 0.68 mA/cm2/mM and 0.36 mA/cm2/mM and a limit of detection of 0.05 mM and 7.9 mM for glucose and lactate respectively

    Quantum effects in electrical conductivity and photoconductivity of single SbSI nanowire

    Get PDF
    For the first time current quantization is reported for antimony sulfoiodide (SbSI) nanowires. It has been registered in current responses on electric eld switching as well as on illumination on and o . Current steps determined in all experiments have been equal to each other within the experimental error. It has been explained by the quantized change of free carrier concentration in nanowire. Lateral dimensions of SbSI nanowires estimated from quantum steps are comparable with geometrical data reported for the same technology of material preparation

    Fully Integrated Biochip Platforms for Advanced Healthcare

    Get PDF
    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications

    Application of a correlation correction factor in a microarray cross-platform reproducibility study

    Get PDF
    Background Recent research examining cross-platform correlation of gene expression intensities has yielded mixed results. In this study, we demonstrate use of a correction factor for estimating cross-platform correlations. Results In this paper, three technical replicate microarrays were hybridized to each of three platforms. The three platforms were then analyzed to assess both intra- and cross-platform reproducibility. We present various methods for examining intra-platform reproducibility. We also examine cross-platform reproducibility using Pearson\u27s correlation. Additionally, we previously developed a correction factor for Pearson\u27s correlation which is applicable when X and Y are measured with error. Herein we demonstrate that correcting for measurement error by estimating the disattenuated correlation substantially improves cross-platform correlations. Conclusion When estimating cross-platform correlation, it is essential to thoroughly evaluate intra-platform reproducibility as a first step. In addition, since measurement error is present in microarray gene expression data, methods to correct for attenuation are useful in decreasing the bias in cross-platform correlation estimates

    Quantum Eects in Electrical Conductivity and Photoconductivity of Single SbSI Nanowire

    Get PDF
    For the rst time current quantization is reported for antimony sulfoiodide (SbSI) nanowires. It has been registered in current responses on electric eld switching as well as on illumination on and o. Current steps determined in all experiments have been equal to each other within the experimental error. It has been explained by the quantized change of free carrier concentration in nanowire. Lateral dimensions of SbSI nanowires estimated from quantum steps are comparable with geometrical data reported for the same technology of material preparation

    High Sensitivity Electrochemical Cholesterol Sensor Utilizing a Vertically Aligned Carbon Nanotube Electrode with Electropolymerized Enzyme Immobilization

    Get PDF
    In this report, a new cholesterol sensor is developed based on a vertically aligned CNT electrode with two-step electrochemical polymerized enzyme immobilization. Vertically aligned CNTs are selectively grown on a 1 mm2 window of gold coated SiO2/Si substrate by thermal chemical vapor deposition (CVD) with gravity effect and water-assisted etching. CNTs are then simultaneously functionalized and enzyme immobilized by electrochemical polymerization of polyaniline and cholesterol enzymes. Subsequently, ineffective enzymes are removed and new enzymes are electrochemically recharged. Scanning electron microscopic characterization indicates polymer-enzyme nanoparticle coating on CNT surface. Cyclic voltammogram (CV) measurements in cholesterol solution show the oxidation and reduction peaks centered around 450 and −220 mV, respectively. An approximately linear relationship between the cholesterol concentration and the response current could be observed in the concentration range of 50–300 mg/dl with a sensitivity of approximately 0.22 μA/mg·dl−1, which is considerably higher compared to previously reported CNT bioprobe. In addition, good specificity toward glucose, uric acid acetaminophen and ascorbic acid have been obtained. Moreover, sensors have satisfactory stability, repeatability and life time. Therefore, the electropolymerized CNT bioprobe is promising for cholesterol detection in normal cholesterol concentration in human blood

    Responsive Hydrogels for Label-Free Signal Transduction within Biosensors

    Get PDF
    Hydrogels have found wide application in biosensors due to their versatile nature. This family of materials is applied in biosensing either to increase the loading capacity compared to two-dimensional surfaces, or to support biospecific hydrogel swelling occurring subsequent to specific recognition of an analyte. This review focuses on various principles underpinning the design of biospecific hydrogels acting through various molecular mechanisms in transducing the recognition event of label-free analytes. Towards this end, we describe several promising hydrogel systems that when combined with the appropriate readout platform and quantitative approach could lead to future real-life applications
    • …
    corecore