1,462 research outputs found

    Fabrication of porous plugs for control of liquid helium

    Get PDF
    Method of producing porous copper plugs combines hydrogen annealing and oxygen annealing. Plugs have high thermal conductivity and small pore size

    Dilution Zone Mixing

    Get PDF
    Studies to characterize dilution zone mixing; experiments on the effects of free-stream turbulence on a jet in crossflow; and the development of an interactive computer code for the analysis of the mixing of jets with a confined crossflow are reviewed

    Gaseous exhaust emissions from a J-58 engine at simulated supersonic flight conditions

    Get PDF
    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust

    On the mixing of a row of jets with a confined crossflow

    Get PDF
    Mean temperature profiles calculated with an interactive microcomputer code which evaluates dilution-zone design alternatives are presented to show the effects of flow and geometric variables on the mixing of a single row of jets injected through sharp-edged orifices into a uniform flow of a different temperature in a constant area duct. In addition, this program is used to calculate profiles for opposed rows of jets with their centerlines in-line, by assuming that the confining effect of an opposite wall is equivalent to that of a plane of symmetry between opposed jets

    Dispersion and dilution of jet aircraft exhaust at high-altitude flight conditions

    Get PDF
    A method is presented for estimating the dispersion and dilution of jet aircraft exhaust from aircraft passage through times on the order of weeks thereafter. In the near wake of the aircraft, the solution is that for round turbulent jets in a parallel flow. More rapid dispersion due to atmospheric effects begins when the scale-dependent eddy viscosity becomes larger than the turbulent jet eddy viscosity. In the far wake region, the solution approaches that for scale-dependent dispersion from a point source moving with the aircraft. Calculations are presented for supersonic aircraft at high altitude flight conditions

    Emission calibration of a J-58 afterburning turbojet engine at simulated supersonic stratospheric flight conditions

    Get PDF
    Emissions of total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust

    Experiments and modeling of dilution jet flow fields

    Get PDF
    Experimental and analytical results of the mixing of single, double, and opposed rows of jets with an isothermal or variable-temperature main stream in a straight duct are presented. This study was performed to investigate flow and geometric variations typical of the complex, three-dimensional flow field in the dilution zone of gas-turbine-engine combustion chambers. The principal results, shown experimentally and analytically, were the following: (1) variations in orifice size and spacing can have a significant effect on the temperature profiles; (2) similar distributions can be obtained, independent of orifice diameter, if momentum-flux ratio and orifice spacing are coupled; (3) a first-order approximation of the mixing of jets with a variable-temperature main stream can be obtained by superimposing the main-stream and jets-in-an-isothermal-crossflow profiles; (4) the penetration of jets issuing mixing is slower and is asymmetric with respect to the jet centerplanes, which shift laterally with increasing downstream distance; (5) double rows of jets give temperature distributions similar to those from a single row of equally spaced, equal-area circular holes; (6) for opposed rows of jets, with the orifice centerlines in line, the optimum ratio of orifice spacing to duct height is one-half the optimum value for single-side injection at the same momentum-flux ratiol and (7) for opposed rows of jets, with the orifice centerlines staggered, the optimum ratio of orifice spacing to duct height is twice the optimum value for single-side injection at the same momentum-flux ratio

    Measurement of exhaust emissions from two J-58 engines at simulated supersonic cruise flight conditions

    Get PDF
    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16 to 23 km. For each flight condition, exhaust measurements were made for four or five power levels from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen (NOX) emissions decreased with increasing altitude, and increased with increasing flight speed. NOX emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude, and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without

    Perspectives on dilution jet mixing

    Get PDF
    A microcomputer code which displays 3-D oblique and 2-D plots of the temperature distribution downstream of jets mixing with a confined crossflow has been used to investigate the effects of varying the several independent flow and geometric parameters on the mixing. Temperature profiles calculated with this empirical model are presented to show the effects of orifice size and spacing, momentum flux ratio, density ratio, variable temperature mainstream, flow area convergence, orifice aspect ratio, and opposed and axially staged rows of jets

    Modeling of dilution jet flowfields

    Get PDF
    The present paper will compare temperature field measurements from selected cases in these investigations with distributions calculated with an empirical model based on assumed vertical profile similarity and superposition and with a 3-D elliptic code using a standard K-E turbulence model. The results will show the capability (or lack thereof) of the models to predict the effects of the principle flow and geometric variables
    corecore